分析 運(yùn)用分析法證明.要證原不等式成立,由分子有理化可得$\sqrt{x}$+$\sqrt{x-1}$>$\sqrt{x-2}$+$\sqrt{x-3}$,運(yùn)用不等式的性質(zhì),即可得證.
解答 證明:運(yùn)用分析法證明.
要證$\sqrt{x}$-$\sqrt{x-1}$<$\sqrt{x-2}$-$\sqrt{x-3}$(x≥3),
即證$\frac{x-(x-1)}{\sqrt{x}+\sqrt{x-1}}$<$\frac{(x-2)-(x-3)}{\sqrt{x-2}+\sqrt{x-3}}$,
即有$\frac{1}{\sqrt{x}+\sqrt{x-1}}$<$\frac{1}{\sqrt{x-2}+\sqrt{x-3}}$,
即為$\sqrt{x}$+$\sqrt{x-1}$>$\sqrt{x-2}$+$\sqrt{x-3}$,
由x≥3,可得$\sqrt{x}$>$\sqrt{x-2}$,$\sqrt{x-1}$>$\sqrt{x-3}$,
即有上式成立.
綜上可得原不等式成立.
點(diǎn)評 本題考查不等式的證明,注意運(yùn)用分析法和不等式的性質(zhì),考查化簡和推理能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=4x | B. | y=$\frac{1}{2}$x | C. | y=x | D. | y=$\frac{1}{4}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ex≥x+1 | B. | ln(x+2)-ln(x+1)$<\frac{1}{x+1}$ | ||
C. | $\frac{2}{π}$x+cosx≥1+sinx | D. | cosx≥1-$\frac{1}{2}$x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com