【題目】已知函數(shù)f(x)滿足:①對(duì)于任意實(shí)數(shù)x,y都有f(xy)+1=f(x)+f(x)f()=0;②當(dāng)x時(shí),f(x)<0.

(1)求證:f(x)=f(2x);

(2)用數(shù)學(xué)歸納法證明:當(dāng)x[,](nN*)時(shí), f(x)≤1-.

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)令yx,可得f(x)=f(2x).

(2)根據(jù)數(shù)學(xué)歸納法的證明步驟,即可證明結(jié)論。

試題證明: (1)yx,可得f(2x)+1=f(x)+f(x),

所以f(x)=f(2x).

(2)①當(dāng)n=1時(shí),x[,],

2x[,1],所以f(2x)≤0,

f(2x)+1=2f(x),所以f(x)=f(2x)≤=1-,

所以當(dāng)n=1時(shí)命題成立;

②假設(shè)nk時(shí)命題成立,即當(dāng)x[](kN*)時(shí),f(x)≤1-,

則當(dāng)nk+1時(shí),x[,],2x[],則

f(x)=f(2x)≤

=1-,

當(dāng)nk+1時(shí)命題成立.

綜上①②可知,當(dāng)x[,](nN*)時(shí),

f(x)≤1-.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2x33(a1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.

(1)求f(x)的解析式; (2)求f(x)在點(diǎn)A(1,16)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對(duì)稱曲線,點(diǎn)分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)判斷fx)的奇偶性,說(shuō)明理由;

(2)當(dāng)x>0時(shí),判斷fx)的單調(diào)性并加以證明;

(3)若f(2t)-mft)>0對(duì)于t∈(0,+∞)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b∈R,c∈[0,2π),若對(duì)于任意實(shí)數(shù)x都有2sin(3x﹣ )=asin(bx+c),則滿足條件的有序?qū)崝?shù)組(a,b,c)的組數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊正方形EFGH,EH所在直線是一條小河,收獲的蔬菜可送到F點(diǎn)或河邊運(yùn)走.于是,菜地分別為兩個(gè)區(qū)域S1和S2 , 其中S1中的蔬菜運(yùn)到河邊較近,S2中的蔬菜運(yùn)到F點(diǎn)較近,而菜地內(nèi)S1和S2的分界線C上的點(diǎn)到河邊與到F點(diǎn)的距離相等,現(xiàn)建立平面直角坐標(biāo)系,其中原點(diǎn)O為EF的中點(diǎn),點(diǎn)F的坐標(biāo)為(1,0),如圖

(1)求菜地內(nèi)的分界線C的方程;
(2)菜農(nóng)從蔬菜運(yùn)量估計(jì)出S1面積是S2面積的兩倍,由此得到S1面積的經(jīng)驗(yàn)值為 .設(shè)M是C上縱坐標(biāo)為1的點(diǎn),請(qǐng)計(jì)算以EH為一邊,另一邊過(guò)點(diǎn)M的矩形的面積,及五邊形EOMGH的面積,并判斷哪一個(gè)更接近于S1面積的經(jīng)驗(yàn)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線)與軸交于點(diǎn),動(dòng)圓與直線相切,并且與圓相外切,

1)求動(dòng)圓的圓心的軌跡的方程;

2)若過(guò)原點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),問(wèn)是否存在以為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在底面是正方形的四棱錐中, , ,點(diǎn)上,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)均不為零的數(shù)列{an},定義向量 ,n∈N* . 下列命題中真命題是(
A.若?n∈N*總有 成立,則數(shù)列{an}是等差數(shù)列
B.若?n∈N*總有 成立,則數(shù)列{an}是等比數(shù)列
C.若?n∈N*總有 成立,則數(shù)列{an}是等差數(shù)列
D.若?n∈N*總有 成立,則數(shù)列{an}是等比數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案