7.設函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{\frac{1}{1-x},x<0}\end{array}\right.$,則f(f(-3))等于( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 先求出f(-3)=$\frac{1}{1-(-3)}$=$\frac{1}{4}$,從而f(f(-3))=f($\frac{1}{4}$),由此能求出結果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{\frac{1}{1-x},x<0}\end{array}\right.$,
∴f(-3)=$\frac{1}{1-(-3)}$=$\frac{1}{4}$,
f(f(-3))=f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2.
故選:A.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要  認真審題,注意函數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,已知sinA:sinB:sinC=3:5:7,則此三角形的最小內角的余弦值等于$\frac{13}{14}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,三棱柱ABC-A1B1C1中,AC=BC,AB=AA1,∠A1AB=60°,D是AB的中點.
(Ⅰ)求證:BC1∥平面A1CD;
(Ⅱ)求證:AB⊥平面A1CD;
(Ⅲ)若AB=AC=2,${A_1}C=\sqrt{6}$,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知四棱錐P-ABCD中底面四邊形ABCD是正方形,各側面都是邊長為2的正三角形,M是棱PC的中點.建立空間直角坐標系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M-BD-C的平面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若直線ax+2y+4=0與直線x+y-2=0互相垂直,那么a的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)$\left\{\begin{array}{l}{{a}^{x}-2a,x>0}\\{-4ax+a,x≤0}\end{array}\right.$,其中a>0,且a≠1,若f(x)在R上單調,則a的取值范圍是( 。
A.(0,$\frac{1}{3}$]B.[$\frac{1}{3}$,1)C.(0,$\frac{1}{2}$]D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖所示,三棱柱A1B1C1-ABC的側棱AA1⊥底面ABC,AB⊥AC,AB=AA1,D是棱CC1的中點.
(Ⅰ)證明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一點E,使C1E∥平面A1BD?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓A:(x+1)2+y2=8,動圓M經過點B(1,0),且與圓A相切,O為坐標原點.
(Ⅰ)求動圓圓心M的軌跡C的方程;
(Ⅱ)直線l與曲線C相切于點M,且l與x軸、y軸分別交于P、Q兩點,求證:$\overrightarrow{OM}$•$\overrightarrow{PQ}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設a>0,已知函數(shù)$f(x)=\sqrt{x}-ln(x+a)$(x>0).
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)試判斷函數(shù)f(x)在(0,+∞)上是否有兩個零點,并說明理由.

查看答案和解析>>

同步練習冊答案