分析 由an+2+(-1)nan=1得,當(dāng)n為奇數(shù)時(shí),an+2-an=1,可判斷數(shù)列{an}的奇數(shù)項(xiàng)構(gòu)成等差數(shù)列,當(dāng)n為偶數(shù)時(shí),an+2+an=1,即a2+a4=a4+a6=…=1,然后利用分組求和可求得答案.
解答 解:由an+2+(-1)nan=1得,當(dāng)n為奇數(shù)時(shí),an+2-an=1,即數(shù)列{an}的奇數(shù)項(xiàng)構(gòu)成等差數(shù)列,首項(xiàng)為1,公差為1,
當(dāng)n為偶數(shù)時(shí),an+2+an=1,即a2+a4=a4+a6=…=1,
∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)
=(1+2+…+30)+(1+1+…+1)
=15×1+$\frac{30×29}{2}$+1×30=480,
故答案為:480.
點(diǎn)評(píng) 本題考查數(shù)列遞推式、數(shù)列的求和問題,考查分類討論思想,考查學(xué)生解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2$\overrightarrow{a}$+$\overrightarrow$ | B. | -2$\overrightarrow{a}$-$\overrightarrow$ | C. | -$\overrightarrow{a}$+2$\overrightarrow$ | D. | -$\overrightarrow{a}$-2$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α⊥β,l∥α⇒l⊥β | B. | α⊥β,l⊥α⇒l∥β | C. | α∥β,l∥α⇒l∥β | D. | α∥β,l⊥α⇒l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinx6=1 | B. | .sinx6=(x6+1)cosx6 | ||
C. | sinx6=kcosx6 | D. | sinx6=(x6+1)tanx6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相切 | C. | 相交 | D. | 過圓心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com