2.函數(shù)y=tan($\frac{π}{3}$-x)的定義域是( 。
A.{x|x∈R,且x≠-$\frac{π}{3}$}B.{x|x∈R,且x≠$\frac{5}{6}π$}
C.{x|x∈R,且x≠kπ+$\frac{5}{6}$π,k∈Z}D.{x|x∈R,且x≠kπ-$\frac{5}{6}$π,k∈Z}

分析 根據(jù)正切函數(shù)的性質(zhì)即可求出函數(shù)定義域.

解答 解:y=tan($\frac{π}{3}$-x)=-tan(x-$\frac{π}{3}$),
由x-$\frac{π}{3}$≠kπ+$\frac{π}{2}$得x≠kπ+$\frac{5}{6}$π,k∈Z,
故函數(shù)的定義域?yàn)閧x|x∈R,且x≠kπ+$\frac{5}{6}$π,k∈Z},
故選:C.

點(diǎn)評 本題主要考查正切函數(shù)的定義域的求解,根據(jù)正切函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)={log_a}\frac{1-mx}{x-1}(a>0,a≠1)$是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)是否存在實(shí)數(shù)p,a,當(dāng)x∈(p,a-2)時(shí),函數(shù)f(x)的值域是(1,+∞).若存在,求出實(shí)數(shù)p,a;若不存在,說明理由;
(3)令函數(shù)g(x)=-ax2+6(x-1)af(x)-5,當(dāng)x∈[4,5]時(shí),求函數(shù)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某中學(xué)為了落實(shí)“陽光運(yùn)動一小時(shí)”活動,計(jì)劃在一塊直角三角形ABC的空地上修建一個(gè)占地面積為S的矩形AMPN健身場地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價(jià)為$\frac{37k}{{\sqrt{S}}}$,草坪的每平方米的造價(jià)為$\frac{12k}{{\sqrt{S}}}$(k為正常數(shù)).設(shè)總造價(jià)T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價(jià)T最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.正方體ABCD-A1B1C1D1中,AC與B1D1所成角為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}滿足:a1=0,a2=1,an=an-1+2an-2(n≥3)計(jì)一個(gè)算法,列出數(shù)列{an}的前20項(xiàng),并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線M:y2=4x,圓N:(x-1)2+y2=r2(其中r為常數(shù),r>0).過點(diǎn)(1,0)的直線l交圓N于C、D兩點(diǎn),交拋物線M于A、B兩點(diǎn),且滿足|AC|=|BD|的直線l只有三條的必要不充分條件是( 。
A.r∈(0,1]B.r∈(1,2]C.r∈[$\sqrt{3}$,4)D.r∈[ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中正確的個(gè)數(shù)是( 。
①空間中到定點(diǎn)的距離等于定長的點(diǎn)的集合構(gòu)成球;
②空間中到定點(diǎn)的距離等于定長的點(diǎn)的集合構(gòu)成球面
③一個(gè)圓繞直徑所在直線旋轉(zhuǎn)半周所形成的曲面圍成的幾何體是球;
④用平面截球,隨著角度不同,截面可能不是圓面.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.研究函數(shù)y=sin|x|的性質(zhì)(定義域、值域、周期、奇偶性、單調(diào)性、最值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}中,a1=3,a2=5,an+2=3an+1+4an,(n∈N*
(I)求證數(shù)列{an+1+an}和{an+1-4an}都是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案