【題目】某零售公司從1月至6月的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下:

月份

1

2

3

4

5

6

銷售量/萬件

6

8

12

13

11

10

利潤/萬元

12

16

26

29

25

22

(1)根據(jù)2月至5月4個月的統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程.(的結(jié)果用分數(shù)表示);

(2)若由回歸直線方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差均不超過1萬元,則認為得到的回歸直線方程是有效的.試用1月和6月的數(shù)據(jù)估計所得的回歸直線方程是否有效?

參考公式:,.

參考數(shù)據(jù):.

【答案】(1) (2)見解析

【解析】

(1)分別計算出,,從而求得,即可求得,問題得解。

(2)將的取值代入回歸方程即可求得預測函數(shù)值,檢驗即可。

(1)由已知得:

所以,所求回歸直線方程為:.

(2)當時,,誤差,

時,,誤差,

因為誤差均不超過1萬元

故所得的回歸直線方程是有效的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】公交車的數(shù)量太多容易造成資源浪費,太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機調(diào)查了50名乘客,經(jīng)整理,他們候車時間(單位:)的莖葉圖如下:

(Ⅰ)將候車時間分為八組,作出相應的頻率分布直方圖;

(Ⅱ)若公交公司將2路車發(fā)車時間調(diào)整為每隔15發(fā)一趟車,那么上述樣本點將發(fā)生變化(例如候車時間為9的不變,候車時間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設其中候車時間不超過10的乘客人數(shù)為,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點,EAD的中點,A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1;

(2)設MOD的中點,證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一元二次函數(shù)fx=ax2+bx+ca0,c0)的圖象與x軸有兩個不同的公共點,其中一個公共點的坐標為(c,0),且當0xc時,恒有fx)>0

1)當a=1,時,求出不等式fx)<0的解;

2)求出不等式fx)<0的解(用a,c表示);

3)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的方程為:

1)過點作圓的切線,求切線方程

2)過點作直線與圓交于、,且,求直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體中,,,、、分別是、的中點,則異面直線所成角的正弦值是( )

A. B. C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,且∠DAB=60°,△PAB是邊長為a的正三角形,且平面PAB⊥平面ABCD,已知點M是PD的中點.

(1)證明:PB∥平面AMC;

(2)求直線BD與平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且拋物線的焦點恰好是橢圓的一個焦點.

(Ⅰ)求橢圓的方程

(Ⅱ)過點作直線與橢圓交于,兩點,滿足為坐標原點),求四邊形面積的最大值,并求此時直線的方程.

查看答案和解析>>

同步練習冊答案