【題目】已知函數(shù),且當(dāng)時,的最小值為2,

1)求的值,并求的單調(diào)遞增區(qū)間.

2)若將函數(shù)的圖象上的點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的,再將所得的圖象向右平移個單位長度,得到函數(shù)的圖象,求方程在區(qū)間上所有根之和.

【答案】1;單調(diào)遞增區(qū)間為)(2

【解析】

1)由條件利用正弦函數(shù)的定義域和值域,求得的值.

2)由題意利用正弦函數(shù)的圖象可得,由此求得它在區(qū)間上所有根,從而得出結(jié)論

1)函數(shù)

所以

,得

,

由題意得,,

,

所以函數(shù)的單調(diào)遞增區(qū)間為.

2)由(1)得,

將函數(shù)的圖象上的點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的,得到,再將的圖象向右平移個單位長度得,

又由,

解得,

),

因?yàn)?/span>,所以

故所有根之和為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)若直線與曲線相交于,兩點(diǎn),且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線焦點(diǎn)的直線與拋物線交于兩點(diǎn),與圓交于,兩點(diǎn),若有三條直線滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,四邊形是矩形,,,的中點(diǎn),為線段上一點(diǎn),且.

(Ⅰ)求證:平面

(Ⅱ)求證:;

(Ⅲ)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義在R上的偶函數(shù),且當(dāng)x≥0時,fx)=x22x

1)求f0)及ff1))的值;

2)求函數(shù)fx)的解析式;

3)若關(guān)于x的方程fx)﹣m0有四個不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,的中點(diǎn),的中點(diǎn),點(diǎn)在線段上,,.

(Ⅰ)求證:平面

(Ⅱ)若,求證:平面

(Ⅲ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考3+3最大的特點(diǎn)就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān)決定從某學(xué)校高一年級的650名學(xué)生中隨機(jī)抽取男生、女生各25人進(jìn)行模擬選科經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10

1)請完成下面的2×2列聯(lián)表;

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由.

附:,其中na+b+c+d

PK2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案