10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}}$)在某一周期內(nèi)圖象最低點(diǎn)與最高點(diǎn)的坐標(biāo)分別為$(\frac{7π}{3},-\sqrt{3})和(\frac{13π}{3},\sqrt{3})$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)△ABC的三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(A)=$\sqrt{3}$,a=3,sinB+sinC=1,求△ABC的面積S.

分析 (Ⅰ)由題意可得A,$\frac{T}{2}$,運(yùn)用周期公式,可得ω,再由最值的條件,可得φ=$\frac{π}{3}$,即可得到所求解析式;
(Ⅱ)求得A,再由正弦定理和余弦定理,求得bc=1,運(yùn)用三角形的面積公式,計(jì)算即可得到所求值.

解答 解:(Ⅰ)由題意可得A=$\sqrt{3}$,$\frac{T}{2}$=$\frac{13π}{3}$-$\frac{7π}{3}$=2π,
可得T=4π,ω=$\frac{2π}{T}$=$\frac{1}{2}$,
由$\sqrt{3}$sin($\frac{1}{2}$×$\frac{7π}{3}$+φ)=-$\sqrt{3}$,
解得$\frac{1}{2}$×$\frac{7π}{3}$+φ=2kπ+$\frac{3π}{2}$,即φ=2kπ+$\frac{π}{3}$,k∈Z,
由|φ|<$\frac{π}{2}}$,可得φ=$\frac{π}{3}$,
即有f(x)=$\sqrt{3}$sin($\frac{1}{2}$x+$\frac{π}{3}$);
(Ⅱ)f(A)=$\sqrt{3}$,即為$\sqrt{3}$sin($\frac{1}{2}$A+$\frac{π}{3}$)=$\sqrt{3}$,
由A∈(0,π),可得$\frac{1}{2}$A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{5π}{6}$),
即有$\frac{1}{2}$A+$\frac{π}{3}$=$\frac{π}{2}$,解得A=$\frac{π}{3}$,
由正弦定理可得$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{3}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$,
即有b=2$\sqrt{3}$sinB,c=2$\sqrt{3}$sinC,
sinB+sinC=1,即b+c=2$\sqrt{3}$,
由a=3,由余弦定理可得
a2=b2+c2-2bccosA=(c+b)2-2bc-2bc×$\frac{1}{2}$=12-3bc=9,
解得bc=1,
則△ABC的面積S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×1×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的解析式的求法,注意運(yùn)用周期公式和三角形函數(shù)的最值,考查三角形的面積的求法,注意運(yùn)用正弦定理和余弦定理,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.為推行“新課堂”教學(xué)法,某化學(xué)教師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中個(gè)隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
 分?jǐn)?shù)[50,59)[60,69)[70,79)[80,89)[90,100]
 甲班頻數(shù) 5 6 4 4 1
 乙班頻數(shù) 1 3 6 5 5
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷“成績(jī)優(yōu)良與教學(xué)方式是否有關(guān)”?
  甲班 乙班 總計(jì)
 成績(jī)優(yōu)良   
 成績(jī)不優(yōu)良   
 總計(jì)   
附:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
臨界值表:
 P(K2≥k) 0.10 0.05 0.025 0.010
 k 2.706 3.841 5.024 6.635
(2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.2016年3月,韓國(guó)著名圍棋棋手李世石與谷歌A1phaGo的人機(jī)大戰(zhàn)賽在韓國(guó)首爾舉行,比賽中采取五局分勝負(fù)的方式(即下完五局),獲勝者將獲得100萬(wàn)美元的獎(jiǎng)勵(lì),假設(shè)在每局比賽中AlphaGo獲勝的概率是$\frac{2}{3}$,李世石獲勝的概率是$\frac{1}{3}$.
(I)求比賽結(jié)果為谷歌A1ph8Go以4:1獲勝的概率;
(Ⅱ)若將比賽規(guī)則改為一方獲得三局勝利后就贏得并結(jié)束比賽.設(shè)X表示比賽的局?jǐn)?shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合S={x∈R|x+1≥2},T={-2,-1,0,1,2},則集合S∩T中元素的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1+a2=8(${\frac{1}{a_1}$+$\frac{1}{a_2}}$),a2+a3+a4=64(${\frac{1}{a_2}$+$\frac{1}{a_3}$+$\frac{1}{a_4}}$).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令cn=1-(-1)nan,不等式ck≥2016(1≤k≤100,k∈N*)的解集為M,求所有ak(k∈M)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=n2+n,則a4的值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知全集U=R,集合A={x|lgx≤0},B={x|2x≤$\root{3}{2}$},則A∩B=( 。
A.(-∞,1]B.(0,$\frac{1}{3}$]C.[$\frac{1}{3}$,1]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某學(xué)校高三年級(jí)800名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間.抽取其中50個(gè)樣本,將測(cè)試結(jié)果按如下方式分成五組:第一組[13,14);第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績(jī)小于14秒被認(rèn)為優(yōu)秀,求該樣本在這次百米測(cè)試中優(yōu)秀的人數(shù);
(Ⅱ)請(qǐng)估計(jì)本年級(jí)這800人中第三組的人數(shù);
(Ⅲ)若樣本第一組只有一名女生,第五組只有一名男生,現(xiàn)從第一、第五組中各抽取一名學(xué)生組成一個(gè)實(shí)驗(yàn)組,求在被抽出的2名學(xué)生中恰好為一名男生和一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.將函數(shù)f(x)=2sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{4}$個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$,縱坐標(biāo)不變,所得到圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A.y=2sin(x-$\frac{π}{6}$)B.y=2sin(4x+$\frac{π}{12}$)C.y=2sin(4x+$\frac{5π}{6}$)D.y=2sin(4x-$\frac{π}{6}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案