分析 (1)消去參數(shù),可得曲線C1的普通方程,利用曲線C2是圓心在極軸上且經(jīng)過極點的圓,射線θ=$\frac{π}{3}$與曲線C2交于點D(4,$\frac{π}{3}$),可得曲線C2的普通方程;
(2)曲線C1的極坐標(biāo)方程為ρ2=$\frac{4}{4co{s}^{2}θ+si{n}^{2}θ}$,代入,可得$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.
解答 解:(1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),普通方程為${x}^{2}+\frac{{y}^{2}}{4}$=1.
曲線C2是圓心在極軸上且經(jīng)過極點的圓,射線θ=$\frac{π}{3}$與曲線C2交于點D(4,$\frac{π}{3}$),
曲線C2的普通方程為(x-4)2+y2=16-----------(4分)
(2)曲線C1的極坐標(biāo)方程為${ρ}^{2}co{s}^{2}θ+\frac{{ρ}^{2}si{n}^{2}θ}{4}$=1,∴ρ2=$\frac{4}{4co{s}^{2}θ+si{n}^{2}θ}$,
所以$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$=$\frac{4si{n}^{2}θ+co{s}^{2}θ}{4}+\frac{4co{s}^{2}θ+si{n}^{2}θ}{4}$=$\frac{5}{4}$-----------------------(10分)
點評 本題考查參數(shù)方程與普通方程、極坐標(biāo)方程的互化,考查學(xué)生的計算能力,比較基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2.00 | 2.20 | 2.60 | 3.20 | 3.40 | 4.00 |
y | 0.22 | 0.20 | 0.30 | 0.48 | 0.56 | 0.60 |
$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ | y=a+bx | y=c+dlgx |
$\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$ | $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$ | |
0.15 | 0.13 | 0.01 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com