13.某公司采用眾籌的方式募集資金,開發(fā)一種創(chuàng)新科技產(chǎn)品,為了解募集的資金x(單位:萬元)與收益率y之間的關(guān)系,對近6個季度眾籌到的資金xi和收益率yi的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)表:
x2.002.202.603.203.404.00
y0.220.200.300.480.560.60
(Ⅰ)通過繪制并觀察散點(diǎn)圖的分布特征后,分別選用y=a+bx與y=c+dlgx作為眾籌到的資金x與收益率y的擬合方式,再經(jīng)過計(jì)算,得到這兩種擬合方式的回歸方程y=0.34+0.02x,y=-0.27+1.47lgx和如表的統(tǒng)計(jì)數(shù)值,試運(yùn)用相關(guān)指數(shù)比較以上兩回歸方程的擬合效果:
$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ y=a+bx y=c+dlgx
 $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$ $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$
 0.150.13 0.01
(Ⅱ)根據(jù)以上擬合效果較好的回歸方程,解答:
(i)預(yù)測眾籌資金為5萬元時的收益率.(精確到0.0001)
(ii)若眾籌資金服從正態(tài)分布N(μ,σ2),試求收益率在75.75%以上的概率.
附:(1)相關(guān)指數(shù)R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
(2)若隨機(jī)變量X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974;
(3)參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.

分析 (Ⅰ)利用公式求出相關(guān)指數(shù),即可得出結(jié)論;
(Ⅱ)(i)當(dāng)x=5時,y=-0.27+1.47lg5≈0.7575;
(ii)收益率在75.75%以上,得出x>5,利用P(X>5)=$\frac{1}{2}$[1-P(μ-3σ<X≤μ+3σ)]=0.0013,即可得出結(jié)論.

解答 解:(Ⅰ)由已知,對于方程y=0.34+0.02x,相關(guān)指數(shù)R2=1-$\frac{0.13}{0.15}$≈0.133;
對于方程y=-0.27+1.47lgx,相關(guān)指數(shù)R2=1-$\frac{0.01}{0.15}$≈0.933>0.133,
∴y=-0.27+1.47lgx的擬合效果好;
(Ⅱ)(i)當(dāng)x=5時,y=-0.27+1.47lg5≈0.7575;
(ii)6個季度的眾籌到資金的平均數(shù)$\overline{x}$=2.9,方差S2=$\frac{1}{6}$[(2-2.9)2+(2.2-2.9)2+(2.6-2.9)2+(3.2-2.9)2+(3.4-2.9)2+(4-2.9)2]=0.49.
由正態(tài)分布得μ=2.9,σ=0.7
令y>0.7575,得-0.27+1.47lgx>0.7575,解得x>5,
又μ+3σ=5,且P(μ-3σ<X≤μ+3σ)=0.9974,
∴P(X>5)=$\frac{1}{2}$[1-P(μ-3σ<X≤μ+3σ)]=0.0013.
∴收益率在75.75%以上的概率等于0.0013.

點(diǎn)評 本題考查概率的計(jì)算,考查正態(tài)分布,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)正數(shù)x,y滿足:x>y,x+2y=3,則$\frac{1}{x-y}$+$\frac{9}{x+5y}$的最小值為( 。
A.$\frac{8}{3}$B.$\frac{11}{4}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(4a-3)x+b-2a,x∈[0,1],若f(x)≤2恒成立.
(1)當(dāng)a=$\frac{1}{2}$時,求實(shí)數(shù)b的取值范圍;
(2)畫出點(diǎn)P(a,b)表示的平面區(qū)域,并求z=a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=$\frac{1-i}{i}$,則|z|等于( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,則下列判斷錯誤的是( 。
A.f(2016)+f(-2016)=0B.f(2015)+f(-2016)<0C.f(2015)-f(-2016)>1D.f(2015)+f(-2016)<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,射線θ=$\frac{π}{3}$與曲線C2交于點(diǎn)D(4,$\frac{π}{3}$).
(1)求曲線C1的普通方程及C2的直角坐標(biāo)方程;
(2)在極坐標(biāo)系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲線C1的兩點(diǎn),求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若角α的終邊上有一點(diǎn)P(-3,-4),則cosα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,正四面體ABCD的頂點(diǎn)C在平面α內(nèi),且直線BC與平面α所成角為15°,頂點(diǎn)B在平面α上的射影為點(diǎn)O,當(dāng)頂點(diǎn)A與點(diǎn)O的距離最大時,直線CD與平面α所成角的正弦值為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法中,一定成立的是( 。
A.若a>b,c>d,則ab>cdB.若$\frac{1}{a}$>$\frac{1}$,則a<b
C.若a>b,則a2>b2D.若|a|<b,則a+b>0

查看答案和解析>>

同步練習(xí)冊答案