19.若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線l:y=kx的距離為$2\sqrt{2}$,則直線l的斜率的取值范圍是( 。
A.$(2-\sqrt{3},2+\sqrt{3})$B.$[2-\sqrt{3},2+\sqrt{3}]$C.$(-∞,2-\sqrt{3})∪(2+\sqrt{3},+∞)$D.$(-∞,2-\sqrt{3}]∪[2+\sqrt{3},+∞)$

分析 求出圓的圓心與半徑,利用圓心到直線的距離與半徑的關(guān)系列出不等式求解即可.

解答 解:圓x2+y2-4x-4y-10=0整理為${(x-2)^2}+{(y-2)^2}={(3\sqrt{2})^2}$,
∴圓心坐標(biāo)為(2,2),半徑為3$\sqrt{2}$,要求圓上至少有三個(gè)不同的點(diǎn)到直線l:y=kx的距離為$2\sqrt{2}$,則圓心到直線的距離應(yīng)不大于等于$\sqrt{2}$,∴$\frac{|2-2k|}{{\sqrt{1+{k^2}}}}≤\sqrt{2}$,∴$2-\sqrt{3}≤k≤2+\sqrt{3}$,
故選:B.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某次招聘考試中,考生甲在答對(duì)第一道題的情況下也答對(duì)第二道題的概率為0.8,這兩道題均答對(duì)的概率為0.5,則考生甲答對(duì)第一道題的概率為( 。
A.$\frac{7}{20}$B.$\frac{1}{20}$C.$\frac{5}{8}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人,為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分成抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)寫出a的值;
(2)試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);
(3)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用X表示其中初中生的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an與1的等差中項(xiàng)等于Sn與1的等比中項(xiàng).
(1)求a1的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=${3}^{1+{a}_{n}}$+(-1)n-1×3n+1t,對(duì)于n∈N*有bn+1>bn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{3-4i}{1+i}$的虛部為( 。
A.$-\frac{7}{2}$B.$\frac{7}{2}$C.$-\frac{7}{2}i$D.$\frac{7}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列說(shuō)法正確的是(  )
A.“p∨q為真”是“p∧q為真”的充分不必要條件
B.若a,b∈[0,1],則不等式a2+b2<$\frac{1}{4}$成立的概率是$\frac{1}{4}$
C.已知隨機(jī)變量X~N(2,σ2),且P(X≤4)=0.84,則P(X≤0)=0.16
D.已知空間直線a,b,c,若a⊥b,b⊥c,則a∥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.口袋中有編號(hào)分別為1、2、3的三個(gè)大小和形狀相同的小球,從中任取2個(gè),則取出的球的最大編號(hào)X的均值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在程序框圖中,輸入N=8,按程序運(yùn)行后輸出的結(jié)果是( 。
A.6B.7C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx-2,x>0}\\{{x}^{2}+ax,x≤0}\end{array}\right.$,f(f(e))=3a,則實(shí)數(shù)a=$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案