10.某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人,為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分成抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)寫出a的值;
(2)試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);
(3)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用X表示其中初中生的人數(shù),求X的分布列和數(shù)學(xué)期望.

分析 (1)根據(jù)頻率頻率直方圖的性質(zhì),可求得a的值;
(2)由分層抽樣,求得初中生有60名,高中有40名,分別求得初高中生閱讀時(shí)間不小于30小時(shí)的學(xué)生的頻率及人數(shù),求和;
(3)分別求得,初高中生中閱讀時(shí)間不足10個(gè)小時(shí)的學(xué)生人數(shù),寫出X的取值及概率,寫出分布列和數(shù)學(xué)期望.

解答 解:(1)由頻率直方圖的性質(zhì),(0.005+0.02+a+0.04+0.005)×10=1,
a=0.03,
(2)由分層抽樣可知:抽取的初中生有60名,高中有40名,
∵初中生中,閱讀時(shí)間不小于30小時(shí)的學(xué)生的頻率為(0.03+0.005)×10=0.25,
∴所有的初中生閱讀時(shí)間不小于30小時(shí)的學(xué)生約有0.25×1800=450人,
同理,高中生閱讀時(shí)間不小于30小時(shí)的學(xué)生的頻率為(0.03+0.005)×10=0.035,
學(xué)生人數(shù)約為0.35×1200=420人,
所有的學(xué)生閱讀時(shí)間不小于30小時(shí)的學(xué)生約有450+420=870,
(3)初中生中閱讀時(shí)間不足10個(gè)小時(shí)的學(xué)生的頻率為0.005×10=0.05,樣本人數(shù)為0.05×60=3人,
同理,高中生中閱讀時(shí)間不足10個(gè)小時(shí)的學(xué)生的頻率為0.005×10×40=2,
故X的可能取值為:1,2,3,
P(X=1)=$\frac{{C}_{3}^{1}•{C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,P(X=2)=$\frac{{C}_{3}^{2}•{C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$,P(X=3)=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{1}{10}$,
∴X的分布列為:

 X 1 2 3
 P $\frac{3}{10}$ $\frac{3}{5}$$\frac{1}{10}$
∴E(X)=1×$\frac{3}{10}$+2×$\frac{3}{5}$+3×$\frac{1}{10}$=$\frac{9}{5}$.

點(diǎn)評 本題考查頻率分布直方圖的應(yīng)用,分布列和期望求法,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某高中為了解全校學(xué)生每周參加體育運(yùn)動(dòng)的情況,隨機(jī)從全校學(xué)生中抽取100名學(xué)生,統(tǒng)計(jì)他們每周參與體育運(yùn)動(dòng)的時(shí)間如下:
每周參與運(yùn)動(dòng)的時(shí)間(單位:小時(shí))[0,4)[4,8)[8,12)[12,16)[16,20]
頻數(shù)24402862
(1)作出樣本的頻率分布直方圖;
(2)①估計(jì)該校學(xué)生每周參與體育運(yùn)動(dòng)的時(shí)間的中位數(shù)及平均數(shù);
    ②若該校有學(xué)生3000人,根據(jù)以上抽樣調(diào)查數(shù)據(jù),估計(jì)該校學(xué)生每周參與體育運(yùn)動(dòng)的時(shí)間不低于8小時(shí)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校為了解本校學(xué)生的課后玩電腦游戲時(shí)長情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每天玩電腦游戲的時(shí)長的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖估計(jì)抽取樣本的平均數(shù)$\overline{x}$和眾數(shù)m(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)已知樣本中玩電腦游戲時(shí)長在[50,60]的學(xué)生中,男生比女生多1人,現(xiàn)從中選3人進(jìn)行回訪,記選出的男生人數(shù)為ξ,求ξ的分布列與期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{1-2i}{2-i}$對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=ax2+bx+c,g(x)=-bx.
(1)若a>b>c,a+b+c=0.求怔:f(x)與g(x)圖象必有兩個(gè)交點(diǎn),設(shè)兩交點(diǎn)為A、B,AB在x軸上的射影為A1B1,求|A1B1|的取值范圍.
(2)若a∈N+,f(x)=0有兩個(gè)小于1的不等正根,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(-2,1),與$\overrightarrow$=(m,3)平行,則m=( 。
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若圓x2+y2=b與直線x+y=b相切,則b的值為(  )
A.$\frac{1}{2}$B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線l:y=kx的距離為$2\sqrt{2}$,則直線l的斜率的取值范圍是(  )
A.$(2-\sqrt{3},2+\sqrt{3})$B.$[2-\sqrt{3},2+\sqrt{3}]$C.$(-∞,2-\sqrt{3})∪(2+\sqrt{3},+∞)$D.$(-∞,2-\sqrt{3}]∪[2+\sqrt{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

同步練習(xí)冊答案