3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{5}(1-x)|,(-4≤x<1)}\\{-(x-2)^{2}+2,(1≤x≤2)}\end{array}\right.$,則f(x)的值域?yàn)椋ā 。?table class="qanwser">A.[0,1]B.[1,2]C.[0,2]D.[0,+∞)

分析 可根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求出-4≤x<1時(shí)f(x)的范圍,然后根據(jù)二次函數(shù)的單調(diào)性求出1≤x≤2時(shí)f(x)的范圍,這兩個(gè)范圍求并集便是函數(shù)f(x)的值域.

解答 解:(1)-4≤x<1時(shí),0<1-x≤5;
∴l(xiāng)og5(1-x)≤1;
∴|log5(1-x)|≥0;
即f(x)≥0;
(2)1≤x≤2時(shí),0≤(x-2)2≤1;
∴1≤-(x-2)2+2≤2;
即1≤f(x)≤2;
∴f(x)的值域?yàn)閇0,+∞).
故選:D.

點(diǎn)評(píng) 考查函數(shù)值域的概念及分段函數(shù)值域的求法,以及分段函數(shù)的概念,對(duì)數(shù)函數(shù)和二次函數(shù)的單調(diào)性,根據(jù)單調(diào)性求函數(shù)的值域,不等式的性質(zhì),絕對(duì)值的含義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,拋物線x2=4$\sqrt{6}$y的焦點(diǎn)B是雙曲線虛軸上的一個(gè)頂點(diǎn),線段BF與雙曲線C的右支交于點(diǎn)A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:?α∈R,sin(π-α)≠-sinα,命題q:?x∈[0,+∞),sinx>x,則下面結(jié)論正確的是(  )
A.¬p∨q是真命題B.p∨q是真命題C.¬p∧q是真命題D.q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在等腰梯形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,|$\overrightarrow{DC}$|=1,點(diǎn)M是線段DC上的動(dòng)點(diǎn),則$\overrightarrow{AB}$•$\overrightarrow{AM}$的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若不等式組$\left\{\begin{array}{l}{y≥0}\\{x-y≥1}\\{x+2y≤4}\\{x+sy+t≥0}\end{array}\right.$,(s,t∈Z)所表示的平面區(qū)域是面積為1的直角三角形,則實(shí)數(shù)t的一個(gè)值為(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知關(guān)于x的方程x2+2alog2(x2+2)+a2-2=0有唯一解,則實(shí)數(shù)a的值為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|lgx≤1},B={-2,5,8,11},則A∩B等于(  )
A.{-2,5,8}B.{5,8}C.{5,8,11}D.{-2,5,8,11}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且滿足$\frac{2a-b}{c}$=$\frac{cosB}{cosC}$,
(1)求角C的大。
(2)設(shè)函數(shù)f(x)=2sinxcosxcosC+2sin2xsinC-$\frac{\sqrt{3}}{2}$,求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在邊長(zhǎng)為4的等邊△ABC中,D為BC的中點(diǎn),則$\overrightarrow{AB}$•$\overrightarrow{AD}$=12.

查看答案和解析>>

同步練習(xí)冊(cè)答案