19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,拋物線x2=4$\sqrt{6}$y的焦點(diǎn)B是雙曲線虛軸上的一個頂點(diǎn),線段BF與雙曲線C的右支交于點(diǎn)A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

分析 求得拋物線的焦點(diǎn)B,可得b=$\sqrt{6}$,即c2-a2=b2=6,設(shè)F(c,0),A(m,n),運(yùn)用向量共線的坐標(biāo)表示,求得m,n,代入雙曲線的方程,解a,c的方程組,可得a,c,進(jìn)而得到所求雙曲線的方程.

解答 解:拋物線x2=4$\sqrt{6}$y的焦點(diǎn)B為(0,$\sqrt{6}$),
可得雙曲線的b=$\sqrt{6}$,即c2-a2=b2=6,①
設(shè)F(c,0),A(m,n),由$\overrightarrow{BA}$=2$\overrightarrow{AF}$,
可得m-0=2(c-m),n-$\sqrt{6}$=2(0-n),
即有m=$\frac{2c}{3}$,n=$\frac{\sqrt{6}}{3}$,
將A($\frac{2c}{3}$,$\frac{\sqrt{6}}{3}$)代入雙曲線方程,可得:
$\frac{4{c}^{2}}{9{a}^{2}}$-$\frac{6}{9×6}$=1,即有2c2=5a2,②
由①②解得a=2,c=$\sqrt{10}$,
可得雙曲線的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1.
故選:D.

點(diǎn)評 本題考查雙曲線的方程的求法,注意運(yùn)用拋物線的焦點(diǎn)和向量共線的坐標(biāo)表示,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC中,邊a,b,c的對角分別為A,B,C,且a=$\sqrt{2}$,c=$\sqrt{6}$,C=$\frac{2π}{3}$,則△ABC的面積S=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y=ax2(a>0)的焦點(diǎn)恰好為雙曲線y2-x2=2的一個焦點(diǎn),則a的值為( 。
A.4B.$\frac{1}{4}$C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若復(fù)數(shù)z滿足z=$\frac{1-i}{1+2i}$,則|z|=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{\sqrt{10}}{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某程序框圖如圖所示,其中n∈N*,若程序運(yùn)行后,輸出S的結(jié)果是( 。
A.$\frac{n(3n-1)}{2}$B.$\frac{(3n+2)(n+1)}{2}$C.$\frac{(3n-2)(n+1)}{2}$D.$\frac{(3n+2)(n-1)}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)A在拋物線上,B,D是準(zhǔn)線上關(guān)于y軸對稱的兩點(diǎn),若:|FA|=|FB|,BF⊥FD,且△ABD的面積為4$\sqrt{2}$,則p的值是( 。
A.2B.1C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示,直線l經(jīng)過拋物線y2=2px(p>0)的焦點(diǎn)F,且與拋物線交于點(diǎn)P,Q兩點(diǎn),由P,Q分別作拋物線的切線交于M,如果|PF|=a,|QF|=b,則|MF|的值為(  )
A.a+bB.$\frac{1}{2}(a+b)$C.abD.$\sqrt{ab}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{6}$,且過點(diǎn)($\sqrt{2}$,$\sqrt{5}$).
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)P是橢圓C上橫坐標(biāo)大于2的一點(diǎn),過點(diǎn)P作圓(x-1)2+y2=1的兩條切線分別與y軸交于點(diǎn)A,B,試確定點(diǎn)P的坐標(biāo),使得△PAB的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{5}(1-x)|,(-4≤x<1)}\\{-(x-2)^{2}+2,(1≤x≤2)}\end{array}\right.$,則f(x)的值域?yàn)椋ā 。?table class="qanwser">A.[0,1]B.[1,2]C.[0,2]D.[0,+∞)

查看答案和解析>>

同步練習(xí)冊答案