6.若直線y=2x-1與直線y=kx+1平行,則k的值是( 。
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

分析 根據(jù)兩條直線平行,它們的斜率相等,得出k的值.

解答 解:∵直線y=2x-1與直線y=kx+1平行,
∴k=2;
故選:D

點(diǎn)評(píng) 本題考查了兩條直線平行的判定與應(yīng)用問(wèn)題,解題時(shí)應(yīng)用兩直線平行,斜率相等,即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的非負(fù)半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+m}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是參數(shù)).
(1)將曲線C的極坐標(biāo)方程和直線l的參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=$\sqrt{14}$,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.直線l的方程為2x-y=0是“直線l平分圓(x-1)2+(y-2)2=1的周長(zhǎng)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若復(fù)數(shù)z滿足z•i=2+3i,則在復(fù)平面內(nèi)z對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({4,3})$,且$\overrightarrow a⊥({t\overrightarrow a+\overrightarrow b})$,則實(shí)數(shù)t=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.用向量$\overrightarrow{a}$表示一輪船自岸邊向正西航行5$\sqrt{3}$km,用$\overrightarrow$表示船自岸邊向正北航行5km,則$\overrightarrow{a}+\overrightarrow$表示北偏西60°航行10km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.拋擲一枚骰子(六個(gè)面上分別標(biāo)以數(shù)字1,2,3,4,5,6),
求:(1)連續(xù)拋擲2次,求向上的數(shù)不同的概率;
(2)連續(xù)拋擲2次,求向上的數(shù)之和為6的概率;
(3)連續(xù)拋擲5次,求恰好出現(xiàn)3次向上的數(shù)為奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足b2-a2=ac,則$\frac{1}{tanA}$-$\frac{1}{tanB}$的取值范圍為(1,$\frac{2\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(4)=________;f(n)=________(  )
A.37 3n2-3n+1B.38 3n2-3n+2C.36 3n2-3nD.35 3n2-3n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案