14.定義在(0,+∞)上函數(shù)f(x)滿足對任意x,y∈(0,+∞),都有xyf(xy)=xf(x)+yf(y),記數(shù)列an=f(2n),有以下命題:
①f(1)=0;
②a1=a2;
③令函數(shù)g(x)=xf(x),則$g(x)+g(\frac{1}{x})=0$;
④令數(shù)列bn=2n•an,則數(shù)列{bn}為等比數(shù)列.
其中真命題的序號為①②③.

分析 ①令x=y=1代入所給的式子求出f(1)的值,并判斷①真假;
②令x=y=2代入式子化簡,再結(jié)合數(shù)列的通項公式進(jìn)行判斷②的真假;
③令y=$\frac{1}{x}$代入式子化簡后,再由函數(shù)g(x)的解析式轉(zhuǎn)化,判斷③真假;
④利用{bn}的通項公式分別求出b1、b2、b3,令x=2,y=4代入式子化簡后,再由等比數(shù)列的定義判斷④真假.

解答 解:①令x=y=1,代入xyf(xy)=xf(x)+yf(y)得,f(1)=0,①正確;
②令x=y=2,得4f(4)=2f(2)+2f(2),即f(4)=f(2),
又由an=f(2n)得,a1=f(2),a2=f(4),則a1=a2,②正確;
③令y=$\frac{1}{x}$,得f(1)=xf(x)+$\frac{1}{x}f(\frac{1}{x})$
由g(x)=xf(x),得g(x)+g($\frac{1}{x}$)=f(1)=0,③正確;
④由bn=2n•an,得b1=2a1,b2=4a2,b3=8a3,而a1=a2,a3=f(8),
令x=2,y=4,得8f(8)=2f(2)+4f(4),
化簡得,f(8)=$\frac{3}{4}$f(2),即a3=$\frac{3}{4}$a2=$\frac{3}{4}$a1,
顯然b1、b2、b3不是等比數(shù)列中的項,所以數(shù)列{bn}不是等比數(shù)列,④錯.
故其中正確命題的為:①②③.
故答案為:①②③

點(diǎn)評 本題考查了抽象函數(shù),及數(shù)列通項公式和等比數(shù)列定義的應(yīng)用,此題的關(guān)鍵是根據(jù)條件正確給x和y值,利用恒等式進(jìn)行求解,考查了解決抽象函數(shù)問題常用的方法:賦值法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-2y≥-2}\\{3x-2y≤3}\\{x+y≥1}\end{array}\right.$,若x+2y≥a恒成立,則實(shí)數(shù)a的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項的和為Sn,且a1=1,a2=4,Sn+1=5Sn-4Sn-1(n≥2),等差數(shù)列{bn}滿足b6=6,b9=12,
(1)分別求出數(shù)列{an},{bn}的通項公式;
(2)若對于任意的n∈N*,(Sn+$\frac{1}{3}$)•k≥bn恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為降低霧霾等惡劣氣候?qū)用竦挠绊,某公司研發(fā)了一種新型防霧霾產(chǎn)品.每一臺新產(chǎn)品在進(jìn)入市場前都必須進(jìn)行兩種不同的檢測,只有兩種檢測都合格才能進(jìn)行銷售,否則不能銷售.已知該新型防霧霾產(chǎn)品第一種檢測不合格的概率為$\frac{1}{6}$,第二種檢測不合格的概率為$\frac{1}{10}$,兩種檢測是否合格相互獨(dú)立.
(Ⅰ)求每臺新型防霧霾產(chǎn)品不能銷售的概率;
(Ⅱ)如果產(chǎn)品可以銷售,則每臺產(chǎn)品可獲利40元;如果產(chǎn)品不能銷售,則每臺產(chǎn)品虧損80元(即獲利-80元).現(xiàn)有該新型防霧霾產(chǎn)品3臺,隨機(jī)變量X表示這3臺產(chǎn)品的獲利,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC的兩個頂點(diǎn)A,B的坐標(biāo)分別是(0,-$\sqrt{3}$),(0,$\sqrt{3}$),且AC,BC所在直線的斜率之積等于$-\frac{3}{4}$.
(1)求頂點(diǎn)C的軌跡M的方程;
(2)當(dāng)點(diǎn)P(1,t)為曲線M上點(diǎn),且點(diǎn)P為第一象限點(diǎn),過點(diǎn)P作兩條直線與曲線M交于E,F(xiàn)兩點(diǎn),直線PE,PF斜率互為相反數(shù),則直線EF斜率是否為定值,若是,求出定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.體育課上,李老師對初三(1)班50名學(xué)生進(jìn)行跳繩測試.現(xiàn)測得他們的成績(單位:個)全部介于20到70之間,將這些成績數(shù)據(jù)進(jìn)行分組(第一組:(20,30],第二組:(30,40],…,第五組:(60,70]),并繪制成如圖所示的頻率分布直方圖.
(Ⅰ)求成績在第四組的人數(shù)和這50名同學(xué)跳繩成績的中位數(shù);
(Ⅱ)從成績在第一組和第五組的同學(xué)中隨機(jī)抽出3名同學(xué)進(jìn)行搭檔訓(xùn)練,設(shè)取自第一組的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.過點(diǎn)P(2,3)與已知直線x-y-7=0垂直的直線方程是( 。
A.x-y-5=0B.x+y-5=0C.x-y+5=0D.x+y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在一次購物抽獎活動中,假設(shè)某l0張獎券中有一等獎券1張,可獲得價值100元的獎品,有二等獎券3張,每張可獲得價值50元的獎品,其余6張沒有獎,某顧客從此l0張獎券中任抽2張,求
(I)該顧客中獎的概率;
(Ⅱ)該顧客獲得獎品總價值X的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某小區(qū)有1000戶,各戶每月的用電量近似服從正態(tài)分布N(300,l01),則用電量在320度以上的戶數(shù)估計約為(  )
(參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.74%.)
A.17B.23C.34D.46

查看答案和解析>>

同步練習(xí)冊答案