在△ABC中,已知∠A=30°,AB=
3
,BC=1,則AC的長為(  )
A、2B、1C、2或1D、4
考點:正弦定理
專題:解三角形
分析:利用余弦定理即可得出.
解答: 解:由余弦定理可得:a2=b2+c2-2bccosA,
1=b2+3-2
3
3
2
,
化為b2-3b+2=0,
解得b=1,2.
故選:C.
點評:本題考查了余弦定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=a2x-4,g(x)=loga|x|(a>0,且a≠1),且f(2)•g(2)<0,則函數(shù)f(x),g(x)在同一坐標(biāo)系中的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足
y≥-2x
y≥x
y+x≤4
,則動點P(x,y)所形成區(qū)域的面積為
 
,z=|x-2y+2|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為R球面上有A,B,C三點,且AB=8
3
,∠ACB=60°,球心O到平面ABC的距離為6,則半徑R=( 。
A、8B、10C、12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,an>0,公比q滿足0<q<1,且a1a3+2a2a4+a2a6=25,a3=2,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=lg(10a),tanβ=lg
1
a
,且α+β=
π
4
,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,(x≤0)
2,(x>0)
,f(-4)=f(0),f(-2)=-2,則函數(shù)F(x)=f(x)-x的零點有(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x+4)=f(x),當(dāng)x∈(-2,0)時,f(x)=2x,則f(2014)+f(2015)+f(2016)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=log
1
2
sin(2x-
π
3
)的增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案