分析 (1)先證AB∥CN,可得△ABD∽△NCD,即可證明$\frac{BD}{CD}$=$\frac{AB}{NC}$;
(2)利用切割線定理求出DM,BD,根據(jù)CN是⊙O1的切線,利用切割線定理,求CN的長.
解答 證明:(1)∵AN是⊙O2的切線,
∴∠ANM=∠C,
∵∠ANM=∠ABD,
∴∠ABD=∠C,
∴AB∥CN,
∴△ABD∽△NCD,
∴$\frac{BD}{CD}$=$\frac{AB}{NC}$;
解:(2)∵DN是⊙O2的切線,
∴DN2=DM•(DM+MC),
∴62=DM•(DM+5),
∴DM=4,
∵AD•DN=BD•DM,
∴BD=3,
∴CB=12,
∵CN是⊙O1的切線,
∴CN2=CM•CB=5×12=60,
∴CN=2$\sqrt{15}$.
點(diǎn)評(píng) 本題考查三角形相似的判定與性質(zhì),考查切割線定理,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2026 | B. | 2036 | C. | 2046 | D. | 2048 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B?A | B. | B?A | C. | A?B | D. | A?B |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的周期是$\frac{π}{2}$ | |
B. | f(x)的值域是{y|y∈R,且y≠0} | |
C. | 直線x=$\frac{5π}{3}$是函數(shù)f(x)圖象的一條對(duì)稱軸 | |
D. | f(x)的單調(diào)遞減區(qū)間是(2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$],k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{15}{4}$ | B. | $\frac{15}{2}$ | C. | -$\frac{15}{4}$ | D. | -$\frac{15}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36種 | B. | 54種 | C. | 72種 | D. | 118種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 即不充分也不必要件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com