14.已知數(shù)列{an}滿足:an=log(n+1)(n+2)定義使a1•a2•…•ak為整數(shù)的數(shù)k(k∈N*)叫做希望數(shù),則區(qū)間[1,2012]內(nèi)所有希望數(shù)的和M=(  )
A.2026B.2036C.2046D.2048

分析 利用an=logn+1(n+2),化簡(jiǎn)a1•a2•a3…ak,得k=2m-2,給m依次取值,可得區(qū)間[1,2012]內(nèi)所有希望數(shù),然后求和.

解答 解:an=logn+1(n+2),
∴由a1•a2•a3…ak為整數(shù)得,log23•log34…log(k+1)(k+2)=log2(k+2)為整數(shù),
設(shè)log2(k+2)=m,則k+2=2m,
∴k=2m-2;
因?yàn)?11=2048>2012,
∴區(qū)間[1,2012]內(nèi)所有希望數(shù)為22-2,23-2,24-2,210-2,
其和M=22-2+23-2+24-2+…+210-2=2026.
故選:A

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì),數(shù)列求和,求出區(qū)間[1,2012]內(nèi)所有希望數(shù)為22-2,23-2,24-2,210-2,是解題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知AB為⊙O的直徑,PH為切線,PE與⊙O交于C、E兩點(diǎn),且與直徑AB交于點(diǎn)D,若PH=3$\sqrt{6}$,PC=3$\sqrt{2}$,DE=2$\sqrt{2}$,DB=2.
(1)求圓O的面積;
(2)試求線段BE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在極坐標(biāo)系中,點(diǎn)(2,$\frac{π}{6}$)到直線ρsinθ=3的距離等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知點(diǎn)A在函數(shù)y=2x的圖象上,點(diǎn)B,C在函數(shù)y=4•2x的圖象上,若△ABC是以B為直角頂點(diǎn)的等腰直角三角形,且點(diǎn)A,C的縱坐標(biāo)相同,則點(diǎn)B橫坐標(biāo)的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=sin($\frac{π}{2}$+x)cosx-sinxcos(3π-x).
(1)求函數(shù)f(x)的最小正周期;
(2)在△ABC中,已知A為銳角,f(A)=1,BC=2,B=$\frac{π}{6}$,求AC邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0,b>0)的一條漸近線方程為y=-2x,則雙曲線的實(shí)軸長(zhǎng)為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=2x2+3,g(x)=a$\sqrt{{x}^{2}+1}$,若對(duì)于任意的x∈R,不等式f(x)>g(x)恒成立,則實(shí)數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,線段MN是⊙O1和⊙O2的公共弦,AN是⊙O2的切線,過(guò)M點(diǎn)的直線分別交⊙O1和⊙O2于B,C兩點(diǎn),交AN于點(diǎn)D.
(1)證明:$\frac{BD}{CD}$=$\frac{AB}{NC}$;
(2)若CN是⊙O1的切線,且ND=6,MC=5,AD=2,求CN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若tan2α=-$\frac{{3\sqrt{7}}}{7}$,α∈(-$\frac{π}{4}$,$\frac{π}{4}}$),則sinα+cosα等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案