11.若A,B任意兩個集合,I為全集,且$\overline{A}$?$\overline{B}$,則A,B的包含關系為(  )
A.B?AB.B?AC.A?BD.A?B

分析 由I為全集,以及A補集與B補集的包含關系,確定出A與B的包含關系即可.

解答 解:∵A,B任意兩個集合,I為全集,且$\overline{A}$?$\overline{B}$,
∴B?A,
故選:B.

點評 此題考查了補集及其運算,熟練掌握補集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知菱形ABCD,P為ABCD外一點,且PA⊥平面ABCD,AB=4,∠DAB=120°,PA=3.求:二面角P-BD-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知點A在函數(shù)y=2x的圖象上,點B,C在函數(shù)y=4•2x的圖象上,若△ABC是以B為直角頂點的等腰直角三角形,且點A,C的縱坐標相同,則點B橫坐標的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0,b>0)的一條漸近線方程為y=-2x,則雙曲線的實軸長為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=2x2+3,g(x)=a$\sqrt{{x}^{2}+1}$,若對于任意的x∈R,不等式f(x)>g(x)恒成立,則實數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(1,y),$\overrightarrow$=(-2,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示,線段MN是⊙O1和⊙O2的公共弦,AN是⊙O2的切線,過M點的直線分別交⊙O1和⊙O2于B,C兩點,交AN于點D.
(1)證明:$\frac{BD}{CD}$=$\frac{AB}{NC}$;
(2)若CN是⊙O1的切線,且ND=6,MC=5,AD=2,求CN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線x=$\frac{{a}^{2}}{c}$(c是橢圓的焦距長的一半)交x軸于A點,橢圓的上頂點為B,過橢圓的右焦點F作垂直于x軸的直線交橢圓的第一象限于P點,交AB于D點,若點D滿足2$\overrightarrow{OD}$=$\overrightarrow{OF}$+$\overrightarrow{OP}$(O為坐標原點).
(I)求橢圓的離心率;
(II)若半焦距為3,過點A的直線l交橢圓于兩點M、N,問在x軸上是否存在定點C使$\overrightarrow{CM}$•$\overrightarrow{CN}$為常數(shù)?若存在,求出C點的坐標及該常數(shù)值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某大學生對自己課余時間所開網(wǎng)店的某商品20天的日銷量統(tǒng)計如表:
售價(單位:元)232120
日銷量(單位:個)101520
頻數(shù)4142
且此商品進價均為每個15元.
(1)根據(jù)上表數(shù)據(jù),求這20天的日利潤的平均數(shù)及方差;
(2)若該同學每晚18:30-21:30雇用一名同學做客服,預計日銷量可提高40%,但需支付客服每晚35元,問增加客服后是否會提高日平均利潤?

查看答案和解析>>

同步練習冊答案