已知拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)F作一條直線l與拋物線交于A(x1,y1),B(x2,y2)兩點(diǎn)
(Ⅰ)求以點(diǎn)F為圓心,且與直線y=x相切的圓的方程
(Ⅱ)從x1,x2,|y1|,|y2|,1,2中取出三個(gè)量,使其構(gòu)成等比數(shù)列,并予以證明.
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)明確拋物線的焦點(diǎn)坐標(biāo),利用點(diǎn)到直線的距離求圓的方程;
(2)設(shè)l 的方程為y=k(x-1),與拋物線方程聯(lián)立方程組,消元后利用根與系數(shù)的關(guān)系可得.
解答: 解:(1)由已知,拋物線的焦點(diǎn)坐標(biāo)為F(1,0),到直線y=x的距離為r=
2
2
,
所以以點(diǎn)F為圓心,且與直線y=x相切的圓的方程為(x-1)2+y2=
1
2
;
(2)設(shè)l 的方程為y=k(x-1),與拋物線方程聯(lián)立得
y=k(x-1)
y2=4x
,所以k2(x-1)2=4x,即k2x2-(2k2+4)x+k2=0,
所以x1•x2=1,
所以x1,1,x2構(gòu)成等比數(shù)列.
點(diǎn)評(píng):本題考查了拋物線的性質(zhì)以及直線與拋物線的位置關(guān)系,關(guān)鍵是聯(lián)立方程組,利用根與系數(shù)的關(guān)系解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球的半徑為R,一個(gè)圓錐的高等于這個(gè)球的直徑,而且球的表面積等于圓錐的表面積,求圓錐的內(nèi)接等邊圓柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x2-2x-1|,若a>b>1,f(a)=f(b),則a+b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
m
=(2sinx,
3
cosx),
n
=(asinx,-2asinx).記函數(shù)f(x)=
m
n
+b,已知函數(shù)f(x)的定義域?yàn)閇0,
π
2
],值域?yàn)閇-5,4].求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出下列不等式組表示的平面區(qū)域,
x+2y≤24
3x+2y≤36
0≤x≤10
0≤y≤11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)不同的平面和兩條不重合的直線,有下列四個(gè)命題
①若m∥n,n?α,則m∥α              
②若a⊥β,α⊥β,則a∥α
③若a⊥b,a⊥α,b⊥β,則α⊥β     
④若m⊥n,α∥β,m⊥α,則n∥β
則以上命題錯(cuò)誤的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、2個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓O:x2+y2=4與坐標(biāo)軸交于點(diǎn)A,B,C.
(1)求與直線AC垂直的圓的切線方程;
(2)設(shè)點(diǎn)M是圓上任意一點(diǎn)(不在坐標(biāo)軸上),直線CM交x軸于點(diǎn)D,直線BM交直線AC于點(diǎn)N,
    ①若D點(diǎn)坐標(biāo)為(2
3
,0),求弦CM的長(zhǎng);
    ②求證:2kND-kMB為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,M,O分別為DD1,AC的中點(diǎn),AB=2.
(1)求證:B1O⊥面ACM;
(2)求三棱錐O-AB1M的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

M,N分別是四面體OABC的邊OA,BC的中點(diǎn),P,Q是MN的三等分點(diǎn),用向量
OA
,
OB
,
OC
表示
OP
OQ

查看答案和解析>>

同步練習(xí)冊(cè)答案