【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示,過線段OC上一點(diǎn)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說明理由.
【答案】(1)24km(2)(3)沙塵暴發(fā)生30h后將侵襲到N城.
【解析】
(1)根據(jù)圖象,計(jì)算可得答案;
(2)根據(jù)圖像分三段寫出函數(shù)解析式,再寫成分段函數(shù)的形式;
(3)根據(jù)分段函數(shù)解析式,計(jì)算出和
時(shí),函數(shù)的最大值,兩個(gè)最大值都小于650,所以
時(shí), 這場(chǎng)沙塵暴不會(huì)侵襲到N城,在
時(shí),令
,解得
即可得到答案.
解:(1)由圖像可知,當(dāng)時(shí),
,所以
km.
(2)當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
.
綜上可知,.
(3)因?yàn)楫?dāng)時(shí),
,
當(dāng)時(shí),
,
所以當(dāng)時(shí),令
,
解得.
因?yàn)?/span>,所以
.
故沙塵暴發(fā)生30h后將侵襲到N城.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程;
(2)若與曲線
相切,且
與坐標(biāo)軸交于
兩點(diǎn),求以
為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是滿足下列條件的集合:①
,
;②若
,則
;③若
且
,則
.
(1)判斷是否正確,說明理由;
(2)證明:“”是“
”的充分條件;
(3)證明:若,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),對(duì)m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且當(dāng)x>0時(shí),0<f(x)<1.
(1)求證f(0)=1;
(2)求證x∈R時(shí),恒有f(x)>0;
(3)求證f(x)在R上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個(gè)結(jié)論:
①函數(shù)是偶函數(shù);
②當(dāng)時(shí),函數(shù)
的值域是
;
③若扇形的周長(zhǎng)為,圓心角為
,則該扇形的弧長(zhǎng)為6cm;
④已知定義域?yàn)?/span>的函數(shù)
,當(dāng)且僅當(dāng)
時(shí),
成立.
⑤函數(shù)的最小正周期是
則上述結(jié)論中正確的是______(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,
,
,
為
的中點(diǎn),
為
中點(diǎn).將
沿
折起到
,使得平面
平面
(如圖2).
(1)求證:;
(2)求直線與平面
所成角的正弦值;
(3)在線段上是否存在點(diǎn)
,使得
平面
? 若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線
的兩條互相垂直的弦(點(diǎn)
在第二象限),且
交于點(diǎn)
,點(diǎn)
為
軸上一點(diǎn),
,其中
為銳角
(1)設(shè)線段的長(zhǎng)為
,將
表示為關(guān)于
的函數(shù)
(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時(shí)的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)
的單調(diào)性;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,已知
都是邊長(zhǎng)為
的等邊三角形,
為
中點(diǎn),且
平面
,
為線段
上一動(dòng)點(diǎn),記
.
(1)當(dāng)時(shí),求異面直線
與
所成角的余弦值;
(2)當(dāng)與平面
所成角的正弦值為
時(shí),求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com