分析 (1)利用絕對值不等式的解集,列出方程求解即可.
(2)利用a=1,若存在x∈R,使得不等式f(2x+1)-f(x-1)≤3-2m成立,化簡函數(shù)的解析式,通過函數(shù)的最小值以及函數(shù)的單調(diào)性,列出不等式,求解即可.
解答 解:(1)顯然a≠0,當a>0時,解集為:[$-\frac{1}{a}$,$\frac{3}{a}$],-$\frac{1}{a}=-3$,$\frac{3}{a}=1$,無解;
當a<0時,解集為:[$\frac{3}{a}$,-$\frac{1}{a}$],令-$\frac{1}{a}$=1,$\frac{3}{a}=-3$,解得a=-1,
綜上a=-1.
(2)a=1時,令h(x)=f(2x+1)-f(x-1)=|2x|-|x-2|=$\left\{\begin{array}{l}{-x-1,x≤0}\\{3x-2,0<x≤2}\\{x+2,x>2}\end{array}\right.$,
由此可知,h(x)在(-∞,0],上是單調(diào)遞減,
在[0,+∞)上單調(diào)遞增,則x=0時,h(x)取得最小值-2,
由題意可知-2≤3-2m,則實數(shù)m的取值范圍是(-∞,$\frac{5}{2}$].
點評 本題考查函數(shù)的最值的應用,絕對值不等式的解法,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1-ln2}{2}$ | B. | $\frac{3-2ln2}{4}$ | C. | $\frac{1+ln2}{2}$ | D. | $\frac{1+2ln2}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{337}$ | B. | 27 | C. | $\sqrt{689}$ | D. | 29 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$<x0<1 | B. | 1<x0<$\sqrt{2}$ | C. | $\sqrt{2}$<x0<$\sqrt{3}$ | D. | $\sqrt{3}$<x0<2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | $-\frac{3}{4}$ | C. | $\frac{{10\sqrt{3}}}{3}$ | D. | $5\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2} | B. | {1,2} | C. | {2,3} | D. | {0,2,3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com