分析 (Ⅰ)利用數(shù)量積的坐標(biāo)運(yùn)算得到f(x)的解析式,降冪后利用兩角和的正弦化簡,根據(jù)f(x)的圖象上兩相鄰對稱軸間的距離為$\frac{π}{2}$求得ω值,得到具體的函數(shù)解析式,再由相位位于正弦函數(shù)的減區(qū)間內(nèi)求得x的范圍得答案;
(Ⅱ)由f(C)=$\frac{1}{2}$求得C,寫出余弦定理,結(jié)合b=2a聯(lián)立方程組求得a,b的值.
解答 解:(Ⅰ)∵$\overrightarrow{m}$=($\sqrt{3}$sinωx,cosωx-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(cosωx,cosωx+$\frac{\sqrt{2}}{2}$),
∴f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}sinωxcosωx+(cosωx-\frac{\sqrt{2}}{2})(cosωx+\frac{\sqrt{2}}{2})$
=$\frac{\sqrt{3}}{2}sin2ωx+co{s}^{2}ωx-\frac{1}{2}$=$\frac{\sqrt{3}}{2}sin2ωx+\frac{1+cos2ωx}{2}-\frac{1}{2}$=$sin(2ωx+\frac{π}{6})$.
∵f(x)的圖象上兩相鄰對稱軸間的距離為$\frac{π}{2}$,∴$\frac{T}{2}=\frac{π}{2}$,即T=π.
∴2$ω=\frac{2π}{T}=\frac{2π}{π}=2$,
則$f(x)=sin(2x+\frac{π}{6})$.
由2kπ$≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}$,得$kπ-\frac{π}{12}≤x≤kπ+\frac{π}{6}$,k∈Z.
∴f(x)的單調(diào)遞減區(qū)間為[$kπ-\frac{π}{12},kπ+\frac{π}{6}$],k∈Z;
(Ⅱ)由f(C)=$\frac{1}{2}$,得$sin(2C+\frac{π}{6})=\frac{1}{2}$,
∵0<C<π,∴2C$+\frac{π}{6}$∈($\frac{π}{6},\frac{13π}{6}$),則$2C+\frac{π}{6}=\frac{5π}{6}$,C=$\frac{π}{3}$.
由余弦定理得:$(\sqrt{3})^{2}={a}^{2}+^{2}-2abcos\frac{π}{3}$,即a2+b2-ab=3,①
又b=2a,②
聯(lián)立①②解得:a=1,b=2.
點評 本題考查平面向量的數(shù)量積運(yùn)算,考查了三角函數(shù)中的恒等變換應(yīng)用,訓(xùn)練了利用余弦定理求解三角形,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|-2<x<2} | C. | {x|2≤x<3} | D. | {x|x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com