【題目】(2015·新課標I卷)函數f(x)=cos(x+)的部分圖像如圖所示,則f(x)的單調遞減區(qū)間為( )
A.(k-,k+), kZ
B.(2k-,2k+),kZ
C.(k-,k+), kZ
D.(2k-,2k+),kZ
【答案】D
【解析】由五點作圖知, 1 4 ω + φ = π 2 5 4 ω + φ = 3 π 2 ,解得 ω = π , φ = π 4 ,所以f(x)=cos( π x+ π 4 ),令2k π < π x+ π 4 ,k ∈ Z, 解得2k- 1 4 <x<2k+ 3 4 ,k ∈ Z ,故單調遞減區(qū)間為(2k- 1 4 ,2k+ 3 4 ),k ∈ Z ,故選D。
本題考查函數y=Acos(ωx+φ)的圖像與性質,先利用五點作圖法列出關于 ω , φ 方程,求出 ω , φ 或利用利用圖像先求出周期,用周期公式求出 ω ,利用特殊點求出 φ ,再利用復合函數單調性求其單調遞減區(qū)間,是中檔題,正確求 ω , φ 使解題的關鍵.
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F分別在A1B1,D1C1上,A1E=D1F=4.過點E,F的平面與此長方體的面相交,交線圍成一個正方形。
(1)(I)在圖中畫出這個正方形(不必說明畫法與理由);
(2)(II)求平面 把該長方體分成的兩部分體積的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方形ABCD的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記BOP=x,將動P到A、B兩點距離之和表示為x的函數f(x),則y=f(x)的圖像大致為()
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=emx+x2-mx
(1)(I)證明:f(x)在(-,0)單調遞減,在(0,+)單調遞增;
(2)(II)若對于任意x1 , x2[-1,1],都有|f(x1)-f(x2)|e-1,求m的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·新課標I卷)在直角坐標系xoy中,曲線C:y=與直線y=kx+a(a>0)交與M,N兩點,
(1)當k=0時,分別求C在點M和N處的切線方程;
(2)y軸上是否存在點P , 使得當k變動時,總有∠OPM=∠OPN?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設的對邊分別為且為銳角,問:(1)證明: B - A = ,(2)求 sin A + sin C 的取值范圍
(1)(1)證明:
(2)(2)求的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點。設異面直線EM與AF所成的角為,則cos的最大值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分別是線段BE,DC的中點.
(Ⅰ)求證:BE//平面ADE ;
(Ⅱ)求平面AEF與平面BEC所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com