分析 用不等式表示第四象限角β,再利用不等式的性質(zhì)求出滿足的不等式,從而確定角的終邊在的象限.
解答 解:∵β是第四象限角,
∴k•360°+270°<α<k•360°+360°,k∈Z,
則k•180°+135°<$\frac{α}{2}$<k•180°+180°,k∈Z,
令k=2n,n∈Z
有n•360°+135°<$\frac{α}{2}$<n•360°+180°,n∈Z;在二象限;
k=2n+1,n∈z,
有n•360°+315°<$\frac{α}{2}$<n•360°+360°,n∈Z;在四象限;
故$\frac{β}{2}$第二或第四象限.
點評 本題考查象限角的表示方法,不等式性質(zhì)的應(yīng)用,通過角滿足的不等式,判斷角的終邊所在的象限.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{25π}{4}$ | B. | $\frac{25π}{4}$ | C. | -10π | D. | 10π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | ($\sqrt{3}$,2) | C. | (0,1)∪($\sqrt{3}$,2) | D. | (0,1)∪(1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com