9.用定積分的幾何意義求${∫}_{0}^{5}$(-$\sqrt{25-{x}^{2}}$)dx的大小為( 。
A.-$\frac{25π}{4}$B.$\frac{25π}{4}$C.-10πD.10π

分析 根據(jù)定積分的幾何意義即可求出.

解答 解:${∫}_{0}^{5}$$\sqrt{25-{x}^{2}}$dx由定積分的幾何意義知是以原點(diǎn)為圓心,以5為半徑的圓的面積的四分之一,
故${∫}_{0}^{5}$$\sqrt{25-{x}^{2}}$dx=$\frac{25π}{4}$,
故${∫}_{0}^{5}$(-$\sqrt{25-{x}^{2}}$)d=-$\frac{25π}{4}$,
故選:A.

點(diǎn)評(píng) 本題考查了定積分,考查了微積分基本定理的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的解題思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.首項(xiàng)為正數(shù)的等差數(shù)列,前n項(xiàng)和為Sn,且S3=S8,當(dāng)n=5或6時(shí),Sn取到最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.是否存在復(fù)數(shù)z.使其滿足$\overline{z}$•z+$2i\overline{z}$=3+ai?如果存在.求實(shí)數(shù)a的取值范圍;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.圓(x+2)2+(y+2)2=4與圓(x-2)2+(y-1)2=9的公切線條數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知角β是第四象限的角,討論$\frac{β}{2}$是哪個(gè)象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知3sin(α-$\frac{π}{2}$)=cos(α+$\frac{9π}{2}$),求下列各式的值:
(1)$\frac{2sinα-cosα}{sinα+2cosα}$;
(2)sinα•cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥-1}\\{y≥x}\\{3x+5y≤8}\end{array}\right.$,則z=$\frac{y}{x-2}$的取值范圍為[-1,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f′(x)是定義在R上的函數(shù)f(x)的導(dǎo)函數(shù),且滿足f′(x)>1,則不等式f(x)+2x+1>f(3x+1)的解集為(  )
A.$\{x|x<-\frac{1}{2}\}$B.{x|x<1}C.$\{x|x>-\frac{1}{2}\}$D.{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)z=(a+i)(1-i),a∈R,i是虛數(shù)單位.若|z|=2,則a=( 。
A.1B.-1C.0D.±1

查看答案和解析>>

同步練習(xí)冊(cè)答案