7.若f(x)=-x2+3,則函數(shù)f(x)的增區(qū)間是(-∞,0).

分析 二次函數(shù)的單調(diào)性與開口方向和對稱軸有關(guān),利用二次函數(shù)圖象及性質(zhì)求解即可.

解答 解:函數(shù)f(x)=-x2+3,開口向下,對稱軸為y軸.
由二次函數(shù)的圖象可知:f(x)的增區(qū)間是(-∞,0),
故答案為(-∞,0).

點評 本題考查了二次函數(shù)的圖象及性質(zhì)的運(yùn)用.二次函數(shù)的單調(diào)性與開口方向和對稱軸有關(guān).屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{log2an}為等差數(shù)列,且a1=$\frac{1}{4}$,a5=64,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.$\sqrt{3}$sinx+cosx=( 。
A.sin(x+$\frac{π}{3}$)B.sin(x+$\frac{π}{6}$)C.2sin(x+$\frac{π}{3}$)D.2sin(x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在三棱錐A-BCD中,AB⊥平面BCD,M,N分別是AC,AD的中點,BC⊥CD.
(1)求異面直線MN與BC所成的角;
(2)求證:平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某高!敖y(tǒng)計初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如表:
非統(tǒng)計專業(yè)統(tǒng)計專業(yè)
1310
720
為了檢驗主修統(tǒng)計專業(yè)是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),查對臨界值
P(x2≥x00.100.050.0250.010
x02.7063.8415.0246.635
所以有95%的把握認(rèn)為主修統(tǒng)計專業(yè)與性別有關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,相關(guān)部門隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計數(shù)據(jù)表:
收入x(萬元)8.28.610.011.311.9
支出y(萬元)6.27.58.08.59.8
(1)根據(jù)上表可得回歸直線方程 $\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=0.76,$\stackrel{∧}{a}$=$\overline y$-$\stackrel{∧}$$\overline x$,據(jù)此估計,該社區(qū)一戶年收入為15萬元的家庭年支出為多少?
(2)若從這5個家庭中隨機(jī)抽選2個家庭進(jìn)行訪談,求抽到家庭的年收入恰好一個不超過10萬元,另一個超過11萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>$\frac{1}{2}$,且當(dāng)x∈[$\frac{1}{2}$,a]時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某班學(xué)生在一次數(shù)學(xué)考試中各分?jǐn)?shù)段以及人數(shù)的成績分布為:[0,80),2人;[80,90),6人;[90,100),4人;[100,110),8人;[110,120),12人;[120,130),5人;[130,140),6人;[140,150),2人.那么分?jǐn)?shù)在[100,130)中的頻數(shù)以及頻率分別為(  )
A.25,0.56B.20,0.56C.25,0.50D.13,0.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,且$\overrightarrow{a}$與$\overrightarrow$夾角為120°求:
(1)($\overrightarrow{a}$-2$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$);
(2)$\overrightarrow{a}$在$\overrightarrow$上的投影;
(3)$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角.

查看答案和解析>>

同步練習(xí)冊答案