2.某高!敖y(tǒng)計(jì)初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如表:
非統(tǒng)計(jì)專業(yè)統(tǒng)計(jì)專業(yè)
1310
720
為了檢驗(yàn)主修統(tǒng)計(jì)專業(yè)是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),查對(duì)臨界值
P(x2≥x00.100.050.0250.010
x02.7063.8415.0246.635
所以有95%的把握認(rèn)為主修統(tǒng)計(jì)專業(yè)與性別有關(guān)系.

分析 直接利用公式求出k的值,然后比較求出的值與臨界值表中數(shù)據(jù)的關(guān)系就能得出統(tǒng)計(jì)結(jié)論.

解答 解:設(shè)a=13,b=10,c=7,d=20.
則a+b=23,c+d=27,a+c=20,b+d=30.
ad=260,bc=70.
由公式x2=$\frac{50×(260-70)^{2}}{23×27×20×30}$≈4.844.
因?yàn)?.844>3.841.
所以,有95%的把握認(rèn)為“主修統(tǒng)計(jì)專業(yè)與性別之間有關(guān)系”.
故答案為95%.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)知識(shí),解答的關(guān)鍵是求k的值,另外,應(yīng)該記住臨界值表中幾個(gè)常用的數(shù)據(jù),此題是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F恰好是圓F:x2+y2-4x+3=0的圓心,且點(diǎn)F到雙曲線C的一條漸近線的距離為1,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“?x∈R,a${\;}_{n+1}^{2}$=anan+2”是“數(shù)列{an}為等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖所示,三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AC=$\sqrt{2}$,則三棱錐P-ABC外接球的體積是( 。
A.$\frac{{\sqrt{2}π}}{3}$B.$\frac{8π}{3}$C.$\frac{4π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=$\sqrt{2x-{x^2}}$的單調(diào)遞減區(qū)間是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若f(x)=-x2+3,則函數(shù)f(x)的增區(qū)間是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列說(shuō)法中,不正確的是( 。
A.商品銷售收入與商品的廣告支出經(jīng)費(fèi)之間具有相關(guān)關(guān)系
B.線性回歸方程對(duì)應(yīng)的直線$\hat y=\hat bx+\hat a$,至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn)
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄,其模型擬合的精度越高
D.在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中,既是奇函數(shù)又在(0,+∞)單調(diào)遞增的是( 。
A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若函數(shù)y=|log22x|在區(qū)間(0,a]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案