17.已知數(shù)列{log2an}為等差數(shù)列,且a1=$\frac{1}{4}$,a5=64,求數(shù)列{an}的通項公式.

分析 設(shè)數(shù)列{log2an}為等差數(shù)列的公差為d,可得log2an+1-log2an=d,即$\frac{{a}_{n+1}}{{a}_{n}}$=2d,可得數(shù)列{an}是等比數(shù)列,再利用等比數(shù)列的通項公式即可得出.

解答 解:設(shè)數(shù)列{log2an}為等差數(shù)列的公差為d,∴l(xiāng)og2an+1-log2an=d,可得$\frac{{a}_{n+1}}{{a}_{n}}$=2d,
∴數(shù)列{an}是等比數(shù)列,設(shè)公比為q.
∵a1=$\frac{1}{4}$,a5=64,∴64=$\frac{1}{4}$×q4,解得q=4.
∴數(shù)列{an}的通項公式an=$\frac{1}{4}×{4}^{n-1}$=4n-2

點評 本題考查了等差數(shù)列與等比數(shù)列的定義及其通項公式、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知橢圓E的中心為原點坐標,離心率為$\frac{{\sqrt{3}}}{2}$,E的右焦點與拋物線C:y2=12x的焦點重合,則橢圓E的方程為$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.C${\;}_{3n}^{38-n}$+C${\;}_{n+21}^{3n}$=( 。
A.466B.478C.512D.526

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx,g(x)=$\frac{1}{8}$x2-x.
(1)求f(x)的單調(diào)區(qū)間和極值點;
(2)是否存在實數(shù)m,使得函數(shù)h(x)=$\frac{3f(x)}{4x}$+m+g(x)有三個不同的零點?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F恰好是圓F:x2+y2-4x+3=0的圓心,且點F到雙曲線C的一條漸近線的距離為1,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知命題p:?x∈R,x2+ax+1≥0,寫出¬p:?x∈R,x2+ax+1<0;若命題p是假命題,則實數(shù)a的取值范圍是a<-2或a>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若tanα=-$\frac{1}{3}$,則sin2α=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.平面直角坐標系xOy中,已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,左、右焦點分別是P和Q,以P為圓心,以3為半徑的圓與以Q為圓心,以1為半徑的圓相交,交點在橢圓C1上.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}+2}$=1的左、右焦點分別為F1和F2,若動直線l:y=kx+m(k,m∈R)與橢圓C2有且僅有一個公共點,且F1M⊥l于M,F(xiàn)2N⊥l于N,設(shè)S為四邊形F1MNF2的面積,請求出S的最大值,并說明此時直線l的位置;若S無最大值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若f(x)=-x2+3,則函數(shù)f(x)的增區(qū)間是(-∞,0).

查看答案和解析>>

同步練習冊答案