5.求拋物線y=x2與直線x+y=2所圍圖形的面積.

分析 由$\left\{\begin{array}{l}y={x^2}\\ x+y=2\end{array}\right.$得x2+x-2=0,解得:x=-2,x=1,依題意,二曲線所圍成的圖形的面積S=${∫}_{-2}^{1}$[(2-x)-x2]dx,利用微積分定理可得答案.

解答 解:聯(lián)立$\left\{\begin{array}{l}y={x^2}\\ x+y=2\end{array}\right.$得x2+x-2=0,解得:x=-2或x=1,
故積分區(qū)間為[-2,1]
直線x+y=2在區(qū)間[-2,1]于拋物線所圍成的圖形的面積
S=${∫}_{-2}^{1}$[(2-x)-x2]dx=(2x-$\frac{1}{2}$x2-$\frac{1}{3}$x3)${|}_{-2}^{1}$=$\frac{9}{2}$.

點評 本題考查定積分在求面積中的應(yīng)用,得到拋物線y=x2與直線x+y=2所圍成的圖形的面積S=${∫}_{-2}^{1}$[(2-x)-x2]dx是關(guān)鍵,考查等價轉(zhuǎn)化思想與運算求解能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.某實體公司老板給員工兩個加薪的方案:①每年年末加1000元;②每半年結(jié)束時加300元.
(Ⅰ)若在該公司干10年,問兩種方案在10年內(nèi)可分別獲得加薪工資共多少元?
(Ⅱ)如果由你選擇,你會選擇其中的哪一種加薪方案比較合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知實數(shù)x,y 滿足$\left\{\begin{array}{l}{x-3y-6≤0}\\{y≤2x+4}\\{2x+3y-12≤0}\end{array}\right.$,直線(1+λ)x+(1-2λ)y+3λ-12=0(λ∈R)過定點A(x0,y0),則z=$\frac{y-{y}_{0}}{x-{x}_{0}}$的取值范圍為(  )
A.(-∞,$\frac{1}{5}$]∪[7,+∞)B.[$\frac{1}{5}$,7]C.(-∞,$\frac{1}{7}$]∪[5,+∞)D.[$\frac{1}{7}$,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個空間幾何體的三視圖及尺寸如圖所示,則該幾何體的體積是(  )
A.$\frac{π}{3}$+2$\sqrt{3}$B.$\frac{π}{3}$+$\sqrt{3}$C.π+2$\sqrt{3}$D.$\frac{2π}{3}$+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知雙曲線$\frac{x^2}{m}$-$\frac{y^2}{3m}$=1的一個焦點是(0,2),橢圓$\frac{x^2}{n}$-$\frac{y^2}{m}$=1的焦距等于4,則n=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.給出下列命題:
①函數(shù)y=cos($\frac{2}{3}$x+$\frac{π}{2}}$)是奇函數(shù);
②函數(shù)y=sin(2x+$\frac{π}{3}}$)的圖象關(guān)于點($\frac{π}{12}$,0)成中心對稱;
③若α,β是第一象限角且α<β,則tanα<tanβ
④x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5π}{4}}$)的一條對稱軸;
其中正確命題的序號為①④.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知圓C經(jīng)過M(3,-3),N(-2,2)兩點,且在y軸上截得的線段長為$4\sqrt{3}$.
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l∥MN,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=e${\;}^{\frac{x}{a}}$(x2-3ax+a2))(a>0)
(1)求函數(shù)f(x)單調(diào)區(qū)間;
(2)函數(shù)f(x)在(-∞,+∞)上是否存在最小值,若存在,求出該最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.
(2)定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求函數(shù)f(x)的解析式.
(3)已知f(2x+1)=4x2+8x+3,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案