分析 (1)求出半球與圓柱的面積,得出y關(guān)于r的函數(shù);
(2)令y≤80,解出r的最大值,從而得出體積V的最大值.
解答 解:(1)半球的表面積${S_1}=2π{r^2}$,圓柱的表面積S2=2πr•l.
于是$y=3×2{S_1}+1×{S_2}=3×4π{r^2}+1×2πr•(2r+1)=16π{r^2}+2πr$.
定義域為$[{\frac{1}{2},+∞})$.
(2)16πr2+2πr≤80,即${r^2}+\frac{1}{8}r-\frac{5}{π}≤0$,解得$r≤\frac{{-\frac{1}{8}+\sqrt{\frac{1}{64}+\frac{20}{π}}}}{2}≈1.2$.
$V=\frac{4}{3}π{r^3}+π{r^2}•(2r+1)=\frac{10}{3}π{r^3}+π{r^2}$,
經(jīng)計算得V≈22.7(立方米).
故r的最大值為1.2(米),此時儲油罐的體積約為22.7立方米.
點評 本題考查了空間幾何體的面積與體積計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com