【題目】函數(shù)f(x)=lnx+ +ax(a∈R),g(x)=ex+
(1)討論f(x)的極值點的個數(shù);
(2)若對于x>0,總有f(x)≤g(x).(i)求實數(shù)a的取值范圍;(ii)求證:對于x>0,不等式ex+x2﹣(e+1)x+ >2成立.

【答案】
(1)解:由題意得f'(x)=x+ +a= ,

當a2﹣4≤0,即﹣2≤a≤2時,f'(x)≥0恒成立,無極值點;

當a2﹣4>0,即a<﹣2或a>2時,

①a<﹣2時,設(shè)方程x2+ax+1=0兩個不同實根為x1,x2,不妨設(shè)x1<x1,x2

則x1+x2=﹣a>0,x1x2=1>0,故0<x1<x2,

∴x1,x2是函數(shù)的兩個極值點.

②a>2時,設(shè)方程x2+ax+1=0兩個不同實根為x1,x2,

則x1+x2=﹣a<0,x1x2=1>0,故x1<0,x2<0,

故函數(shù)沒有極值點.

綜上,當a<﹣2時,函數(shù)有兩個極值點;

當a≥﹣2時,函數(shù)沒有極值點


(2)解:(i)f(x)≤g(x)等價于ex﹣lnx+x2≥ax,

由x>0,即a≤ 對于x>0恒成立,

設(shè)φ(x)= (x>0),

φ′(x)= ,

∵x>0,∴x∈(0,1)時,φ'(x)<0,φ(x)單調(diào)遞減,

x∈(1,+∞)時,φ'(x)>0,φ(x)單調(diào)遞增,

∴φ(x)≥φ(1)=e+1,

∴a≤e+1.

(ii)( ii)由( i)知,當a=e+1時有f(x)≤g(x),

即:ex+ x2≥lnx+ x2+(e+1)x,

等價于ex+x2﹣(e+1)x≥lnx…①當且僅當x=1時取等號,

以下證明:lnx+ ≥2,

設(shè)θ(x)=lnx+ ,則θ′(x)= =

∴當x∈(0,e)時θ'(x)<0,θ(x)單調(diào)遞減,

x∈(e,+∞)時θ'(x)>0,θ(x)單調(diào)遞增,

∴θ(x)≥θ(e)=2,

∴l(xiāng)nx+ ≥2,②當且僅當x=e時取等號;

由于①②等號不同時成立,故有ex+x2﹣(e+1)x+ >2


【解析】(1)求f(x)的導(dǎo)數(shù)f′(x),根據(jù)x>0求出f'(x)的值域,討論a的值得出f′(x)的正負情況,判斷f(x)的單調(diào)性和極值點問題;(2)(i)f(x)≤g(x)等價于ex﹣lnx+x2≥ax,由x>0,利用分離常數(shù)法求出a的表達式,再構(gòu)造函數(shù)求最值即可;(ii)由( i)結(jié)論,a=e+1時有f(x)≤g(x),得出不等式,再進行等價轉(zhuǎn)化,證明轉(zhuǎn)化的命題成立即可.
【考點精析】通過靈活運用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下面四個推理:

①由“若是實數(shù),則”推廣到復(fù)數(shù)中,則有“若是復(fù)數(shù),則”;

②由“在半徑為R的圓內(nèi)接矩形中,正方形的面積最大”類比推出“在半徑為R的球內(nèi)接長方體中,正方體的體積最大”;

③以半徑R為自變量,由“圓面積函數(shù)的導(dǎo)函數(shù)是圓的周長函數(shù)”類比推出“球體積函數(shù)的導(dǎo)函數(shù)是球的表面積函數(shù)”;

④由“直角坐標系中兩點的中點坐標為”類比推出“極坐標系中兩點、的中點坐標為”.

其中,推理得到的結(jié)論是正確的個數(shù)有( )個

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如圖所示的空間直角坐標系Oxyz

(1)若t=1,求異面直線AC1A1B所成角的大;

(2)若t=5,求直線AC1與平面A1BD所成角的正弦值;

(3)若二面角A1—BD—C的大小為120°,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):

空氣質(zhì)量指數(shù)

(0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

空氣質(zhì)量等級

1級優(yōu)

2級良

3級輕度污染

4級中度污染

5級重度污染

6級嚴重污染

該社團將該校區(qū)在2016年100天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖,把該直方圖所得頻率估計為概率.

(Ⅰ)請估算2017年(以365天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);
(Ⅱ)該校2017年6月7、8、9日將作為高考考場,若這三天中某天出現(xiàn)5級重度污染,需要凈化空氣費用10000元,出現(xiàn)6級嚴重污染,需要凈化空氣費用20000元,記這三天凈化空氣總費用為X元,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯誤的是( )

A. 的極小值點,則在區(qū)間上單調(diào)遞減

B. 函數(shù)的圖像可以是中心對稱圖形

C. ,使

D. 的極值點,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,

已知圓和圓.

1)若直線過點,且被圓截得的弦長為,

求直線的方程;(2)設(shè)P為平面上的點,滿足:

存在過點P的無窮多對互相垂直的直線,

它們分別與圓和圓相交,且直線被圓

截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,.

(1)求直線與平面所成角的正弦值.

(2)在棱上是否存在點,使得平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場為了解該商場某商品近5年日銷售量(單位:件),隨機抽取近5年50天的銷售量,統(tǒng)計結(jié)果如下:

日銷售量

100

150

天數(shù)

30

20

頻率

若將上表中頻率視為概率,且每天的銷售量相互獨立.則在這5年中:

(1)求5天中恰好有3天銷售量為150件的概率(用分式表示);

(2)已知每件該商品的利潤為20元,用X表示該商品某兩天銷售的利潤和(單位: 元),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosC=b﹣ c. (Ⅰ)求角A的大。
(Ⅱ)若B= ,AC=4,求BC邊上的中線AM的長.

查看答案和解析>>

同步練習冊答案