【題目】如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如圖所示的空間直角坐標系O—xyz.
(1)若t=1,求異面直線AC1與A1B所成角的大。
(2)若t=5,求直線AC1與平面A1BD所成角的正弦值;
(3)若二面角A1—BD—C的大小為120°,求實數(shù)t的值.
【答案】(1) .
(2) .
(3) .
【解析】分析:(1)先根據(jù)坐標表示向量,,再利用向量數(shù)量積求向量夾角,即得異面直線與所成角,(2)先利用方程組解得平面的一個法向量,利用向量數(shù)量積得向量夾角余弦值,再根據(jù)線面角與向量夾角互余關(guān)系得結(jié)果,(3)先利用方程組解得平面以及平面的一個法向量,利用向量數(shù)量積得法向量夾角余弦值,再根據(jù)二面角與向量夾角相等或互補關(guān)系得結(jié)果.
詳解:(1)當時,,,,,,
則,
,
故,
所以異面直線與所成角為.
(2)當時,,,,,,
則,,
設(shè)平面的法向量,
則由得,
不妨取,則, 此時,
設(shè)與平面所成角為,因為,
則,
所以與平面所成角的正弦值為.
(3)由得,,,
設(shè)平面的法向量,
則由得,
不妨取,則, 此時,
又平面的法向量,
故,解得,
由圖形得二面角大于,所以符合題意.
所以二面角的大小為,的值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩名籃球運動員分別在各自不同的5場比賽所得籃板球數(shù)的莖葉圖如圖所示,已知兩名運動員在各自5場比賽所得平均籃板球數(shù)均為10.
(1)求x,y的值;
(2)求甲乙所得籃板球數(shù)的方差和,并指出哪位運動員籃板球水平更穩(wěn)定;
(3)教練員要對甲乙兩名運動員籃板球的整體水平進行評估.現(xiàn)在甲乙各自的5場比賽中各選一場進行評估,則兩名運動員所得籃板球之和小于18的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P為函數(shù)f(x)=lnx的圖象上任意一點,點Q為圓[x﹣(e+ )]2+y2=1任意一點,則線段PQ的長度的最小值為( )
A.
B.
C.
D.e+ ﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求證:BD⊥平面ADE;
(2)求直線BE和平面CDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個值為2.
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面為正方形的四棱錐S﹣ABCD中,SA=SB=SC=SD,異面直線AD與SC所成的角為60°,AB=2.則四棱錐S﹣ABCD的外接球的表面積為( )
A.6π
B.8π
C.12π
D.16π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=lnx+ +ax(a∈R),g(x)=ex+ .
(1)討論f(x)的極值點的個數(shù);
(2)若對于x>0,總有f(x)≤g(x).(i)求實數(shù)a的取值范圍;(ii)求證:對于x>0,不等式ex+x2﹣(e+1)x+ >2成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:函數(shù)和在公共定義域內(nèi),恒成立;
(3)若存在兩個不同的實數(shù),,滿足,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com