4.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)的左、右焦點分別為F1,F(xiàn)2,過F2作雙曲線C的一條漸近線的垂線,垂足為H,若F2H的中點M在雙曲線C上,則雙曲線C的漸近線方程為( 。
A.y=±xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±2$\sqrt{2}$x

分析 求出H的坐標,代入雙曲線方程,然后轉(zhuǎn)化求解a、b關(guān)系,即可得到結(jié)果.

解答 解:不妨設垂足H在第一象限,則由$\left\{{\begin{array}{l}{y=\frac{a}x}\\{y=-\frac{a}(x-c)}\end{array}}\right.$,得$H(\frac{a^2}{c},\frac{ab}{c})$,
故$M(\frac{1}{2}(\frac{a^2}{c}+c),\frac{ab}{2c})$,
把點M坐標代入雙曲線方程中得$\frac{1}{4}{(\frac{a}{c}+\frac{c}{a})^2}-\frac{1}{4}{(\frac{a}{c})^2}=1$.
即有$\frac{c^2}{a^2}=2$,解得a=b,
故雙曲線C的漸近線方程為y=±x.

點評 本題考查雙曲線的簡單性質(zhì)的應用,直線與雙曲線方程的位置關(guān)系,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.直線2x-y+3=0在x軸上的截距為( 。
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.$\frac{2}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上任一點P與橢圓上兩定點A(x0,y0),B(-x0,-y0)的連線的斜率之積是-$\frac{^{2}}{{a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知命題p:方程x2+mx+1=0有兩個不相等的負根;命題q:方程4x2+4(m-2)x+1=0無實根.若p∨q為真,(p∧q)為假,則m的取值范圍為(1,2]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.(I)設函數(shù)f(x)=x(x+1)(x+2),則f′(0)=2;
(II)設函數(shù)f(x)=x(x+1)(x+2)…(x+100),則f′(0)=1×2×3×…×100.
(只需列出式子即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.各項均為正數(shù)的數(shù)列{an},a1=a,a2=b,且對滿足m+n=p+q的正整數(shù)m,n,p,q都有$\frac{{a}_{m}+{a}_{n}}{(1+{a}_{m})(1+{a}_{n})}$=$\frac{{a}_{p}+{a}_{q}}{(1+{a}_{p})(1+{a}_{q})}$.
(Ⅰ)當a=$\frac{1}{2}$,b=$\frac{4}{5}$時,求證:數(shù)列{$\frac{{1-{a_n}}}{{1+{a_n}}}$}是等比數(shù)列,并求通項an;  
(Ⅱ)證明:對任意a,存在與a有關(guān)的常數(shù)λ,使得對于每個正整數(shù)n,都有$\frac{1}{λ}$≤an≤λ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,|F1F2|=6,P是雙曲線右支上的一點,F(xiàn)2P與y軸交于點A,△APF1的內(nèi)切圓在邊PF1上的切點為Q,若|PQ|=1,則雙曲線的離心率是( 。
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且f(x+1)+x-2=x2-3;
(1)求f(x)的解析式;
(2)方程f(x)-k=0的兩個實根x1,x2滿足x${\;}_{1}^{2}$+x${\;}_{2}^{2}$=45,求k值.

查看答案和解析>>

同步練習冊答案