1.若一個(gè)長方體的高為80cm,長比寬多10cm,則這個(gè)長方體的體積y(cm3)與長方體的寬x(cm)之間的表達(dá)式是y=80x(x+10),x∈(0,+∞).

分析 由題意可知,長方體的長為(x+10)cm,由此利用長方體的體積公式能求出長方體的體積.

解答 解:∵一個(gè)長方體的高為80cm,長比寬多10cm,長方體的寬xcm,
∴由題意可知,長方體的長為(x+10)cm,
∴長方體的體積y=80x(x+10),x>0.
故答案為:y=80x(x+10),x∈(0,+∞).

點(diǎn)評(píng) 本題考查長方體的體積y(cm3)與長方體的寬x(cm)之間的表達(dá)式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意長方體體積公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=ax-lnx在區(qū)間[1,+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2]B.(-∞,0]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等比數(shù)列{an}中,a8=1,公差q=$\frac{1}{2}$,則該數(shù)列前8項(xiàng)的和S8=( 。
A.254B.255C.256D.512

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.空間兩個(gè)角α,β滿足α與β的兩邊平行,若α=50°,求角β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為e,直線x=$\frac{{a}^{2}}{c}$與兩條漸近線相交于P,Q兩點(diǎn),F(xiàn)為右焦點(diǎn),△FPQ為等邊三角形.
(1)求雙曲線C的離心率e的值;
(2)若雙曲線C被直線y=ax+b截得的弦長為$\frac{^{2}{e}^{2}}{a}$,求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C的圖形如圖所示,其上半部分是半橢圓$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(y≥0)$,下半部分是半圓x2+y2=b2(y≤0),(a>b>0),半橢圓內(nèi)切于矩形ABCD,且CD交y軸于點(diǎn)G,點(diǎn)P是半圓上異于A,B的任意一點(diǎn),當(dāng)點(diǎn)P位于點(diǎn)$M(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{3}}}{3})$時(shí),△AGP的面積最大.
(1)求曲線C的方程;
(2)連接PC,PD分別交AB于E,F(xiàn),求證:AE2+BF2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將直角坐標(biāo)(1,1)轉(zhuǎn)化為極坐標(biāo)為( 。
A.$({1,\frac{π}{4}})$B.$({\sqrt{2},\frac{π}{4}})$C.$({\sqrt{2},\frac{3π}{4}})$D.$({\sqrt{2},-\frac{π}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,二面角α-AB-β的大小為600,棱上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,則直線AB與CD所成角的余弦值為( 。
A.$\frac{{2\sqrt{17}}}{17}$B.$\frac{{\sqrt{17}}}{17}$C.$\frac{{\sqrt{221}}}{17}$D.$\frac{{4\sqrt{17}}}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求與圓C:x2+(y+2)2=3相切,且在x軸和y軸上截距相等的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案