(1+2x)(1-x)10展開式中x4的系數(shù)是    .(用數(shù)字作答)
【答案】分析:展開式即(1+2x)(1-C101x+C102 x2-C103x3+C104 x4+…+C1010 x10),故展開式中x4的系數(shù)是 C410-2C310,化簡(jiǎn)球的結(jié)果.
解答:解:(1+2x)(1-x)10=(1+2x)(1-C101x+C102 x2-C103x3+C104 x4+…+C1010 x10),
故展開式中x4的系數(shù)是 C410-2C310=-30,
故答案為-30.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,求得展開式中x4的系數(shù)是 C410-2C310,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、(1+2x)(1-x)10展開式中x4的系數(shù)是
-30
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(
x
-1)=-x
,則函數(shù)f(x)的表達(dá)式為( 。
A、f(x)=x2+2x+1(x≥0)
B、f(x)=x2+2x+1(x≥-1)
C、f(x)=-x2-2x-1(x≥0)
D、f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=loga(1-x),g(x)=loga(1+x),(a>0且a≠1).
(Ⅰ)設(shè)函數(shù)F(x)=f(x)-g(x),判斷函數(shù)F(x)的奇偶性并證明;
(Ⅱ)若關(guān)于x的方程g(m+2x-x2)=f(x)有實(shí)數(shù)根,求實(shí)數(shù)m的范圍;
(Ⅲ)當(dāng)a>1時(shí),不等式f(n-x)>
12
g(x)對(duì)任意x∈[0,1]恒成立,求實(shí)數(shù)n的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為A=
.
x~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(I)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式;
(II)記bn=
.
2~(a1)(a2)(a3)…(an-1)(an)
(n∈N*)
,若{an}是等差數(shù)列,且滿足a1+a2=3,a3+a4=7,求bn=9217時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)模擬)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實(shí)常數(shù)p和q,對(duì)于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說(shuō)明理由.
(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步練習(xí)冊(cè)答案