【題目】設(shè)函數(shù)f(x)=x(ex﹣1)﹣ax2(e=2.71828…是自然對數(shù)的底數(shù)).
(1)若 ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(﹣1,0)內(nèi)無極值,求a的取值范圍;
(3)設(shè)n∈N* , x>0,求證:

【答案】
(1)解:當(dāng) 時,

所以f'(x)=ex﹣1+xex﹣x=(ex﹣1)(x+1)

當(dāng)x∈(﹣∞,﹣1)時,f'(x)>0;當(dāng)x∈(﹣1,0)時,f'(x)<0;

當(dāng)x∈(0,+∞)時,f'(x)>0

故f(x)在(﹣∞,﹣1),(0,+∞)單調(diào)遞增,在(﹣1,0)單調(diào)遞減


(2)解:若f(x)在(﹣1,0)內(nèi)無極值,則f(x)在(﹣1,0)上單調(diào),

又f'(x)=(x+1)ex﹣2ax﹣1

①若f(x)在(﹣1,0)上遞減,則f'(x)≤0,對x∈(﹣1,0)恒成立,

于是有 ,令 ,

下面證明h(x)在(﹣∞,0)上單調(diào)遞增: ,令r(x)=(r﹣1)ex+1,則r'(x)=(x﹣1)ex+ex=xex

當(dāng)x<0時,r'(x)<0,r(x)單調(diào)遞減,r(x)>r(0)=0,h'(x)>0h(x)在(﹣∞,0)單調(diào)遞增.

當(dāng)x∈(﹣1,0)時,由g(x)=ex+h(x)是增函數(shù),得g(x)>g(﹣1)=1.

由2a≤g(x),得 ;

②若f(x)在(﹣1,0)上單調(diào)遞增,則f'(x)≥0,對x∈(﹣1,0)恒成立,

于是2a≥g(x),當(dāng)x∈(﹣1,0)時,由ex>x+1得 ,

從而增函數(shù)g(x)=ex+h(x)<2,這樣2a>2,a>1.綜上得


(3)證明:用數(shù)學(xué)歸納法證明①當(dāng)n=1時,ex>x+1,不等式成立;

②假設(shè)n=k時不等式成立,即 ,

當(dāng)n=k+1時,令

顯然(0)=0,由歸納假設(shè), 對x>0成立,

所以(x)在(0,+∞)上單調(diào)遞增,當(dāng)x>0時,(x)>(0)=0,即當(dāng)n=k+1

時,不等式也成立.

綜合①②n∈N+,x>0時,


【解析】(1)當(dāng) 時,f'(x)=ex﹣1+xex﹣x=(ex﹣1)(x+1),由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)的單調(diào)區(qū)間.(2)若f(x)在(﹣1,0)內(nèi)無極值,則f(x)在(﹣1,0)上單調(diào),又f'(x)=(x+1)ex﹣2ax﹣1,由此利用分類討論思想及導(dǎo)數(shù)的性質(zhì)能求出a的取值范圍.(3)用數(shù)學(xué)歸納法能證明
【考點精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)對題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第二屆世界青年奧林匹克運(yùn)動會,中國獲37金,13銀,13銅共63枚獎牌居獎牌榜首位,并打破十項青奧會記錄.由此許多人認(rèn)為中國進(jìn)入了世界體育強(qiáng)國之列,也有許多人持反對意見.有網(wǎng)友為此進(jìn)行了調(diào)查,在參加調(diào)查的2 548名男性公民中有1 560名持反對意見,2 452名女性公民中有1 200人持反對意見,在運(yùn)用這些數(shù)據(jù)說明中國的獎牌數(shù)是否與中國進(jìn)入體育強(qiáng)國有無關(guān)系時,用什么方法最有說服力(  )

A. 平均數(shù)與方差 B. 回歸直線方程

C. 獨立性檢驗 D. 概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

分類

積極參加

班級工作

不太主動參

加班級工作

總計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

總計

24

26

50

(1)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)試運(yùn)用獨立性檢驗的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,nan+1﹣(n+1)an=1(n∈N+
(1)求數(shù)列{an}的通項公式;
(2)若 ,求數(shù)列{bn}的最大項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請用相關(guān)系數(shù)加以說明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.

附注:

參考數(shù)據(jù):,

,≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,x∈R.
(1)證明對a、b∈R,且a≠b,總有:|f(a)﹣f(b)|<|a﹣b|;
(2)設(shè)a、b、c∈R,且 ,證明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(x+2)=2f(x),且當(dāng)x∈[2,4]時, ,g(x)=ax+1,對x1∈[﹣2,0],x2∈[﹣2,1],使得g(x2)=f(x1),則實數(shù)a的取值范圍為(
A.
B.
C.(0,8]
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生的時間與性別的關(guān)系,得到下面的數(shù)據(jù):出生時間在晚上的男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.

(1)將2×2列聯(lián)表補(bǔ)充完整.

性別

出生時間

總計

晚上

白天

男嬰

女嬰

總計

(2)能否在犯錯誤的概率不超過0.1的前提下認(rèn)為嬰兒性別與出生時間有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的s的值是(  )

A. 3 B. -3 C. -4 D. 4

查看答案和解析>>

同步練習(xí)冊答案