2.已知空間四面體ABCD中,AC=AD=BC=BD=2,且四面體ABCD的外接球的表面積為7π,如果AB=CD=a,則a=$\sqrt{6}$.

分析 由題意可采用割補(bǔ)法,考慮到四面體ABCD的四個(gè)面為全等的三角形,所以可在其每個(gè)面補(bǔ)上一個(gè)以a,2,2為三邊的三角形作為底面,且以分別為x,y,z,長(zhǎng)、兩兩垂直的側(cè)棱的三棱錐,從而可得到一個(gè)長(zhǎng)、寬、高分別為x,y,z的長(zhǎng)方體,由此能求出球的半徑,進(jìn)而利用四面體ABCD的外接球的表面積為7π,求出a.

解答 解:由題意可采用割補(bǔ)法,考慮到四面體ABCD的四個(gè)面為全等的三角形,
所以可在其每個(gè)面補(bǔ)上一個(gè)以a,2,2為三邊的三角形作為底面,
且以分別為x,y,z,長(zhǎng)、兩兩垂直的側(cè)棱的三棱錐,
從而可得到一個(gè)長(zhǎng)、寬、高分別為x,y,z的長(zhǎng)方體,
并且x2+y2=a2,x2+z2=4,y2+z2=4,
設(shè)球半徑為R,則有(2R)2=x2+y2+z2=$\frac{1}{2}$a2+4,
∵四面體ABCD的外接球的表面積為7π,
∴球的表面積為S=4πR2=7π.
∴4R2=7,
∴$\frac{1}{2}$a2+4=7,∴a=$\sqrt{6}$.
故答案為:$\sqrt{6}$.

點(diǎn)評(píng) 本題考查幾何體的外接球的表面積的求法,割補(bǔ)法的應(yīng)用,判斷外接球的直徑是長(zhǎng)方體的對(duì)角線的長(zhǎng)是解題的關(guān)鍵之一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列關(guān)于程序框圖的描述
①對(duì)于一個(gè)算法來(lái)說(shuō)程序框圖是唯一的;
②任何一個(gè)框圖都必須有起止框;
③程序框圖只有一個(gè)入口,也只有一個(gè)出口;
④輸出框一定要在終止框前.
其中正確的有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.連續(xù)擲一枚骰子兩次,則兩次骰子正面向上的點(diǎn)數(shù)之和為奇數(shù)的概率為(  )
A.$\frac{5}{12}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 3 4 7 14
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 17 4
乙校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 1 2 8 9
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 1010  y
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異;
(3)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
 甲校 乙校 總計(jì) 
 優(yōu)秀   
 非優(yōu)秀   
 總計(jì)   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.
臨界值表:
 P(K2≥k0 0.100.05 0.010
 k0 2.706 3.8416.635 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等比數(shù)列{an},a3=4,且a3,a4+2,a5成等差數(shù)列,數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn<m對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.${∫}_{0}^{\frac{π}{2}}$cosxdx等于(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某人對(duì)一地區(qū)人均工資x(千元)與該地區(qū)人均消費(fèi)y(千元)進(jìn)行統(tǒng)計(jì)調(diào)查,y與x有相關(guān)關(guān)系,得到回歸直線方程$\hat y$=0.66x+1.56.若該地區(qū)的人均消費(fèi)水平為7.5千元,則該地區(qū)的人均工資收入為9(千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.用部分自然數(shù)構(gòu)造如圖的數(shù)表:用aij(i≥j)表示第i行第j個(gè)數(shù)(i,j∈N+),使得ai1=aii=i.每行中的其他各數(shù)分別等于其“肩膀”上的兩個(gè)數(shù)之和,a(i+1)j=ai(j-1)+aij(i≥2,j≥2).設(shè)第n(n∈N+)行的第二個(gè)數(shù)為bn(n≥2).
(1)寫出第7行的第三個(gè)數(shù); 
(2)寫出bn+1與bn的關(guān)系并求bn(n≥2);
(3)設(shè)cn=2(bn-1)+n,證明:$\frac{1}{c_2}$+$\frac{1}{c_4}$+$\frac{1}{c_6}$+…+$\frac{1}{{{c_{2n}}}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等比數(shù)列{an}的公比q=2,且a2,a3+1,a4成等差數(shù)列.
(1)求a1及an
(2)設(shè)bn=an+n,求數(shù)列{bn}的前5項(xiàng)和S5

查看答案和解析>>

同步練習(xí)冊(cè)答案