分析 PD⊥平面α,可得PD⊥AD,PD⊥DB,∠PAD=30°,∠PBD=45°.分別在Rt△ADP中,在Rt△BDP中,利用直角三角形邊角關(guān)系可得PA,PB.在Rt△ABP中,AB=$\sqrt{P{A}^{2}+P{B}^{2}}$,即可得出.
解答 解:∵PD⊥平面α,∴PD⊥AD,PD⊥DB.
∴∠PAD=30°,∠PBD=45°.
在Rt△ADP中,AP=$\frac{PD}{sin3{0}^{°}}$=$\frac{1}{\frac{1}{2}}$=2.
在Rt△BDP中,BP=$\frac{PD}{sin4{5}^{°}}$=$\sqrt{2}$.
在Rt△ABP中,AB=$\sqrt{P{A}^{2}+P{B}^{2}}$=$\sqrt{{2}^{2}+(\sqrt{2})^{2}}$=$\sqrt{6}$.
點評 本題考查了線面面面垂直的判定與性質(zhì)定理、線面角、直角三角形的邊角公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 弘 | B. | 德 | C. | 尚 | D. | 學(xué) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+$\sqrt{3}$ | B. | 1+$\sqrt{2}$ | C. | 2-$\sqrt{2}$ | D. | $\sqrt{2}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com