9.若整數(shù)a除以非零整數(shù)b,商為整數(shù),且余數(shù)為零,我們就說a能被b整除(或說b能整除a),記做b|a,若a=C${\;}_{100}^{0}$+C${\;}_{100}^{1}$•8+…+C${\;}_{100}^{99}$•899+C${\;}_{100}^{100}$•8100,且b|(a-1),則b 的值可以是(  )
A.83B.93C.103D.113

分析 利用二項(xiàng)式定理可得:a=C${\;}_{100}^{0}$+C${\;}_{100}^{1}$•8+…+C${\;}_{100}^{99}$•899+C${\;}_{100}^{100}$•8100=(1+8)100=(10-1)100,展開可得:a-1=103×$(1{0}^{97}-{∁}_{100}^{1}•1{0}^{96}+$…-${∁}_{100}^{97}$+494),即可得出結(jié)論.

解答 解:∵a=C${\;}_{100}^{0}$+C${\;}_{100}^{1}$•8+…+C${\;}_{100}^{99}$•899+C${\;}_{100}^{100}$•8100=(1+8)100=(10-1)100
=$1{0}^{100}+{∁}_{100}^{1}$1099×(-1)+…+${∁}_{100}^{98}×1{0}^{2}$-${∁}_{100}^{99}$×10+1,
∴a-1=103×$(1{0}^{97}-{∁}_{100}^{1}•1{0}^{96}+$…-${∁}_{100}^{97}$+494),
∴103|(a-1),
則b=103
故選:C.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用、整除的方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆寧夏高三上月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的最小值和最大值;

(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(3)是否存在實(shí)數(shù),對(duì)任意的,且,都有恒成立,若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知A(0,1),B(-3,4),C(2,a)三點(diǎn)共線,則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某凍品店為了解氣溫對(duì)其銷售量的影響,隨機(jī)記錄了該店1月份中5天的日銷售量y(單位:千克)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù)作為樣本,如表:
x36989
y1210887
(1)利用最小二乘法求出y與x的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)設(shè)該地1月份的日最低氣溫X~N(μx,σx2),其中μx近似為樣本平均數(shù)$\overline{x}$,σx2近似為樣本方差Sx2,該地1月份的最高氣溫ξ與最低氣溫x的關(guān)系為ξ=2x+1且ξ~N(μξ,σξ2,)),其中μξ近似為最高氣溫的平均數(shù),σξ2近似為最高氣溫的方差sξ2,求p(10.4≤ξ≤24.2).
附:①$\sqrt{130}$≈11.5,$\sqrt{3.2}$≈1.8,若X~N(μ,σ2),
則p(μ-σ≤ξ≤μ+σ)=0.6826,p(μ-2σ≤ξ≤μ+2σ)=0.9544
附:②回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a$∈[\frac{5}{2},\frac{17}{4}]$時(shí),記f(x)的極大值為M,極小值為N,求M-N的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以下四個(gè)命題:
①對(duì)立事件一定是互斥事件;
②函數(shù)y=x+$\frac{1}{x}$的最小值為2;
③八位二進(jìn)制數(shù)能表示的最大十進(jìn)制數(shù)為256;
④在△ABC中,若a=80,b=150,A=30°,則該三角形有兩解.
其中正確命題的個(gè)數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)復(fù)數(shù)z1=i,z2=$\frac{2-3i}{|3-4i|}$,z=z1+z2,則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0).
(1)若不等式f(x)>0的解集為(-1,3),求a,b的值;
(2)若f(1)=3,a>0,b>0,求$\frac{1}{a}+\frac{4}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若tanα、tanβ分別是方程x2+x-2=0的兩個(gè)根,則tan(α+β)=-$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案