A. | 2$\sqrt{2}$ | B. | $\frac{3}{2}$+$\sqrt{2}$ | C. | 3$\sqrt{2}$+2 | D. | 2$\sqrt{2}$+3 |
分析 $\overrightarrow a⊥\overrightarrow b$,可得$\overrightarrow{a}•\overrightarrow$=0,解得m+n=2.(m,n>0).再利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答 解:∵$\overrightarrow a⊥\overrightarrow b$,∴$\overrightarrow{a}•\overrightarrow$=m+n-2=0,解得m+n=2.(m,n>0).
則$\frac{1}{m}+\frac{2}{n}$=$\frac{1}{2}(m+n)$$(\frac{1}{m}+\frac{2}{n})$=$\frac{1}{2}(3+\frac{n}{m}+\frac{2m}{n})$≥$\frac{1}{2}(3+2\sqrt{\frac{n}{m}•\frac{2m}{n}})$=$\frac{3+2\sqrt{2}}{2}$,當(dāng)且僅當(dāng)n=$\sqrt{2}$m=4-2$\sqrt{2}$時(shí)取等號(hào).
故選:B.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交 | C. | 重合 | D. | 平行或重合 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線的傾斜角的取值范圍是[0°,180°] | |
B. | 若直線的傾斜角為90°,則這條直線與y軸平行 | |
C. | 任意一條直線都有傾斜角和斜率 | |
D. | 若直線l的傾斜角為銳角,則它的斜率大于0;若直線l的傾斜角為鈍角,則它的斜率小于0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com