15.已知向量$\overrightarrow a=({m,1}),\overrightarrow b=({1,n-2}),({m>0,n>0})$若$\overrightarrow a⊥\overrightarrow b$,則$\frac{1}{m}+\frac{2}{n}$的最小值為( 。
A.2$\sqrt{2}$B.$\frac{3}{2}$+$\sqrt{2}$C.3$\sqrt{2}$+2D.2$\sqrt{2}$+3

分析 $\overrightarrow a⊥\overrightarrow b$,可得$\overrightarrow{a}•\overrightarrow$=0,解得m+n=2.(m,n>0).再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵$\overrightarrow a⊥\overrightarrow b$,∴$\overrightarrow{a}•\overrightarrow$=m+n-2=0,解得m+n=2.(m,n>0).
則$\frac{1}{m}+\frac{2}{n}$=$\frac{1}{2}(m+n)$$(\frac{1}{m}+\frac{2}{n})$=$\frac{1}{2}(3+\frac{n}{m}+\frac{2m}{n})$≥$\frac{1}{2}(3+2\sqrt{\frac{n}{m}•\frac{2m}{n}})$=$\frac{3+2\sqrt{2}}{2}$,當(dāng)且僅當(dāng)n=$\sqrt{2}$m=4-2$\sqrt{2}$時(shí)取等號(hào).
故選:B.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+2$\overrightarrow$-2$\overrightarrow{c}$,$\overrightarrow{BC}$=3$\overrightarrow{a}$-3$\overrightarrow$+3$\overrightarrow{c}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$,則直線AD與BC( 。
A.平行B.相交C.重合D.平行或重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.直線的傾斜角的取值范圍是[0°,180°]
B.若直線的傾斜角為90°,則這條直線與y軸平行
C.任意一條直線都有傾斜角和斜率
D.若直線l的傾斜角為銳角,則它的斜率大于0;若直線l的傾斜角為鈍角,則它的斜率小于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)二次函數(shù)f(x)=x2+ax+a.
(1)若方程f(x)-x=0的兩實(shí)根x1和x2滿足0<x1<x2<1.求實(shí)數(shù)a的取值范圍.
(2)求函數(shù)g(x)=af(x)-a2(x+1)-2x在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx,-1),$\overrightarrow{n}$=(sinx,cos2x),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.若x∈[0,$\frac{π}{4}$],f(x)=$\frac{\sqrt{3}}{3}$,求cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}為等差數(shù)列,公差d=2且a2,a4,a5成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若Sn為{an}的前n項(xiàng)和,求當(dāng)n為多少時(shí)Sn有最小值,并求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知商場(chǎng)銷售某種茶杯購買人數(shù)n與茶杯標(biāo)價(jià)x元滿足關(guān)系式:n=-x+b(b為常數(shù)).把購買人數(shù)為零時(shí)的最低標(biāo)價(jià)稱為無效價(jià)格,已知無效價(jià)格為每個(gè)30元.現(xiàn)在這種茶杯的成本價(jià)是10/個(gè),商場(chǎng)以高于成本價(jià)的相同價(jià)格(標(biāo)價(jià))出售. 問:
(1)求b的值;
(2)商場(chǎng)要獲取最大利潤,茶杯的標(biāo)價(jià)應(yīng)定為每件多少元?
(3)通常情況下,獲取最大利潤只是一種“理想結(jié)果”,如果商場(chǎng)要獲得最大利潤的75%,那么茶杯的標(biāo)價(jià)為每個(gè)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是矩形,BC=PC,E是PA的中點(diǎn).
(1)求證:平面PBM⊥平面CDE;
(2)已知點(diǎn)M是AD的中點(diǎn),點(diǎn)N是AC上一點(diǎn),且平面PDN∥平面BEM.若BC=2AB=4,求點(diǎn)N到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=ln|x-1|+2cosπx(-2≤x≤4)的所有零點(diǎn)之和等于(  )
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案