9.如圖,網(wǎng)絡紙上正方形的邊長為l,粗線畫出的是某幾何體的三視圖,則該幾何體的外接球表面積為( 。
A.12πB.34πC.$\frac{17π}{4}$D.17π

分析 由三視圖可知:該幾何體為一個三棱錐,底面為直角三角形,直角邊長分別為2,2,高為3.該三棱錐所在的長方體的對角線的長度即為其外接球的直徑.

解答 解:由三視圖可知:該幾何體為一個三棱錐,底面為直角三角形,直角邊長分別為2,2,高為3.
∴該三棱錐所在的長方體的對角線的長度=$\sqrt{{2}^{2}+{2}^{2}+{3}^{2}}$=$\sqrt{17}$.即為其外接球的直徑.
∴該幾何體的外接球表面積S=4π×$(\frac{\sqrt{17}}{2})^{2}$=17π,
故選;D.

點評 本題考查了球的表面積計算公式、三棱錐的三視圖、長方體的對角線,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知直線l⊥平面α,直線m?平面β,下列命題中正確的是(  )
A.α∥β⇒l∥mB.α⊥β⇒l∥mC.l∥m⇒α⊥βD.l⊥m⇒α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知$\overrightarrow{a}$,$\overrightarrow$是兩個不共線的平面向量,向量$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{a}$-μ$\overrightarrow$(λ,μ∈R),若$\overrightarrow{AB}$∥$\overrightarrow{AC}$,則有( 。
A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則( 。
A.ω=2,φ=$\frac{π}{6}$B.ω=2,φ=$\frac{π}{3}$C.ω=1,φ=$\frac{π}{6}$D.ω=1,φ=$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某校從高一年級A,B兩個班中各選出7名學生參加物理競賽,他們的成績(單位:分)的莖葉圖如圖所示,其中A班學生的平均分是85分
(1)求m的值,并計算A班7名學生成績的方差s2
(2)從成績在90分以上的學生中隨機抽取兩名學生,求至少有一名A班學生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),滿足:a1=b1=1,a5=b3,且S3=9.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求$\frac{1}{{S}_{1}+1}$+$\frac{1}{{S}_{2}+1}$+…+$\frac{1}{{S}_{n}+n}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.(1)$\frac{tan(π-a)•cos(2π-a)•sin(-a+\frac{3}{2}π)}{cos(-a-π)•sin(-π-a)}$.
(2)tan70°cos10°($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在區(qū)間[-3,3]上任取一個實數(shù)x,則sin$\frac{π}{6}$x≥$\frac{1}{2}$的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.網(wǎng)格紙的各小格都是邊長為1的正方形,圖中粗實線畫出的是一個幾何體的三視圖,其中正視圖是正三角形,則該幾何體的外接球表面積為(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

同步練習冊答案