【題目】在ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.

【答案】
(1)解:由正弦定理設(shè)

= = =

整理求得sin(A+B)=2sin(B+C)

又A+B+C=π

∴sinC=2sinA,即 =2


(2)解:由余弦定理可知cosB= =

由(1)可知 = =2②

再由b=2,①②聯(lián)立求得c=2,a=1

sinB= =

∴S= acsinB=


【解析】(1)利用正弦定理把題設(shè)等式中的邊轉(zhuǎn)化成角的正弦,整理后可求得sinC和sinA的關(guān)系式,則 的值可得.(2)先通過余弦定理可求得a和c的關(guān)系式,同時(shí)利用(1)中的結(jié)論和正弦定理求得a和c的另一關(guān)系式,最后聯(lián)立求得a和c,利用三角形面積公式即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會(huì)》是中央電視臺(tái)最近推出的一檔有重大影響力的大型電視文化節(jié)目,今年兩會(huì)期間,教育部部長(zhǎng)陳寶生答記者問時(shí)就給予其高度評(píng)價(jià).基于這樣的背景,山東某中學(xué)積極響應(yīng),也舉行了一次詩詞競(jìng)賽.組委會(huì)在競(jìng)賽后,從中抽取了部分選手的成績(jī)(百分制),作為樣本進(jìn)行統(tǒng)計(jì),作出了圖1的頻率分布直方圖和圖2的莖葉圖(但中間三行污損,看不清數(shù)據(jù)).

(I)求樣本容量和頻率分布直方圖中的,的值;

(II)分?jǐn)?shù)在[80,90)的學(xué)生中,男生有2人,現(xiàn)從該組抽取三人“座談”,寫出基本事件空間并求至少有兩名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正數(shù)x、y滿足xy=x+y+3.
(1)求xy的范圍;
(2)求x+y的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東莞市某高級(jí)中學(xué)在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限(單位:年, )和所支出的維護(hù)費(fèi)用(單位:萬元)廠家提供的統(tǒng)計(jì)資料如下:

(1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護(hù)費(fèi)用關(guān)于的線性回歸方程

(2)若規(guī)定當(dāng)維護(hù)費(fèi)用超過13.1萬元時(shí),該批空調(diào)必須報(bào)廢,試根據(jù)(1)的結(jié)論預(yù)測(cè)該批空調(diào)使用年限的最大值.

參考公式:最小二乘估計(jì)線性回歸方程中系數(shù)計(jì)算公式:

,其中表示樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點(diǎn),過點(diǎn)的直線,分別與圓交于,兩點(diǎn).

)若,,求的面積;

)若直線過點(diǎn),證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為實(shí)常數(shù).

()設(shè),當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

()當(dāng)時(shí),直線與函數(shù)、的圖象一共有四個(gè)不同的交點(diǎn),且以此四點(diǎn)為頂點(diǎn)的四邊形恰為平行四邊形.

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=2 時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案