精英家教網 > 高中數學 > 題目詳情
11.若復數z滿足(1+i)z=(3+i)i,則|z|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

分析 利用復數的運算法則、共軛復數的定義、模的計算公式即可得出.

解答 解:∵(1+i)z=(3+i)i,(1-i)(1+i)z=(3i-1)(1-i),∴2z=4i+2,∴z=1+2i.
∴|z|=$\sqrt{5}$.
故選:C.

點評 本題考查了復數的運算法則、共軛復數的定義、模的計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.2016年里約奧運會和殘奧會吉祥物的名字于2015年12月14日揭曉,兩個吉祥物分別叫維尼修斯(Vinicius)和湯姆(Tom)(如圖),以此紀念巴薩諾瓦曲風的著名音樂家Vinicius de Moraes和Tom Jobim.某商場抽獎箱中放置了除圖案外,其他無差別的8張卡片,其中有2張印有“維尼修斯(Vinicius)“圖案,n(2≤n≤4)張印有“湯姆(Tom)”圖案,其余卡片上印有”2016年里約奧運會“的圖案.
(1)若n=4,從抽獎箱中任意取一卡片,記下圖案后放回,連續(xù)抽取三次,求三次取出的卡片中,恰有兩張印有“2016年里約奧運會”圖案卡片的概率;
(2)從抽獎箱中任意抽取兩張卡片,如果兩張卡片圖案相同的概率是$\frac{2}{7}$.求n的值;
(3)①當n=3時,隨機抽取一次,若規(guī)定取出印有“維尼修斯(Vinicius)”圖案的卡片獲得16元購物券,取出印有“湯姆(Tom)”圖案的卡片獲得8元購物券,取出印有“2016年里約奧運會”的圖案的卡片沒有獎勵,用ξ表示獲得獎券的面值,求ξ的分布列和數學期望E(ξ).
②在①的條件下,若商場每天有800人參與抽獎活動,顧客獲得的購物券全部用于捆綁其他商品消費,每1元購物券能給商場帶來10元純利潤,則商場每天在這個活動中能獲得的純利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知集合 P={0,1,2},若P∩(∁zQ)=∅,則集合Q可以為( 。
A.{x|x=2a,a∈P}B.{x|x=2a,a∈P}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知實數x,y滿足$\left\{\begin{array}{l}x≥0\\ 2x-y≤0\\ kx-y+1≥0\end{array}\right.$,z=|x+y|,若z的最大值為3,則k的值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.某中學高一年級進行學生性別與科目偏向問卷調查,共收回56份問卷,下面是2×2列聯表:
男生女生合計
偏理科281644
偏文科4812
合計322456
(1)有多大把握認為科目偏向與性別有關?
(2)在偏文科的在中按分層抽樣的方法選取6人,又在這6人中選取2人進行面對面交流求選出的2名學生是女生的概率.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.設函數f(x)=a(x+1)2ln(x+1)+bx(x>-1),曲線y=f(x)過點(e-1,e2-e+1),且在點(0,0)處的切線方程為y=0.
(1)求a,b的值;
(2)證明:當x≥0時,f(x)≥x2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.某機構在某一學校隨機抽取30名學生參加環(huán)保知識測試,測試成績(單位:分)如圖所示,假設得分值的中位數為me,眾數為m0,平均值為$\overline x$,則( 。
A.me=m0=$\overline x$B.me=m0<$\overline x$C.me<m0<$\overline x$D.m0<me<$\overline x$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知銳角△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,且a,b,c成等差數列,則cosB的取值范圍為[$\frac{1}{2}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.記min{a,b}表示a,b中較小的數,比如min{3,-1}=-1.設函數f(x)=|min{x2,log${\;}_{\frac{1}{16}}$x}|(x>0),若f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),則x1x2x3的取值范圍為(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{4},\frac{1}{2})$C.$(0,\frac{1}{4})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

同步練習冊答案