A. | (-∞,-$\frac{1}{3}}$)∪(${\frac{1}{3}$,+∞) | B. | (-∞,-$\frac{1}{3}}$]∪[${\frac{1}{3}$,+∞) | C. | (-2,-$\frac{1}{3}}$]∪[${\frac{1}{3},2}$) | D. | [-2,-$\frac{1}{3}}$]∪[${\frac{1}{3}$,2] |
分析 首先由題意求出f(x),然后令g(x)=mx,轉(zhuǎn)化為圖象交點的問題解決.
解答 解:由題意得f(x)=$\left\{\begin{array}{l}{{-x}^{2}+2x,0≤x≤1}\\{2-x,1<x≤2}\end{array}\right.$,
又因為f(x)是偶函數(shù)且周期是4,可得整個函數(shù)的圖象,
令g(x)=mx,本題轉(zhuǎn)化為兩個交點的問題,
由圖象可知有2部分組成,
,
結(jié)合圖象,-2<m≤-$\frac{1}{3}$或$\frac{1}{3}$≤m<2,
故選:C.
點評 本題考查的是函數(shù)的性質(zhì)的綜合應(yīng)用,利用數(shù)形結(jié)合快速得解.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}π}}{12}$ | B. | $\frac{{\sqrt{3}π}}{6}$ | C. | $1-\frac{{\sqrt{3}π}}{6}$ | D. | $1-\frac{{\sqrt{3}π}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com