【題目】設(shè)函數(shù)的最小正周期為,且其圖象關(guān)于直線對稱,則在下面結(jié)論中正確的個數(shù)是__________.

①圖象關(guān)于點(diǎn)對稱;②圖象關(guān)于點(diǎn)對稱;③在上是增函數(shù);④在上是增函數(shù);⑤由可得必是的整數(shù)倍.

【答案】2

【解析】

根據(jù)函數(shù)的周期和對稱軸可以得到解析式,然后對5個結(jié)論分別進(jìn)行判斷,從而得到答案.

函數(shù)的最小正周期為,

所以,得到,

得到,

,,

代入對稱軸,得,

因?yàn)?/span>,所以,得,

所以函數(shù)解析式為

,,得,

所以對稱中心的坐標(biāo)為,

所以,①圖象關(guān)于點(diǎn)對稱,錯誤;

②圖象關(guān)于點(diǎn)對稱,正確;

,,

解得,,

所以函數(shù)的單調(diào)遞增區(qū)間為,

所以③在上是增函數(shù),錯誤;

④在上是增函數(shù),正確;

由函數(shù)對稱中心的坐標(biāo)為,

可得相鄰零點(diǎn)的差是的整數(shù)倍,

所以⑤由可得必是的整數(shù)倍,錯誤.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中裝有6張卡片,上面分別寫著如下六個定義域?yàn)?/span>的函數(shù):, , ,從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得新函數(shù)為奇函數(shù)的概率是 __________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時,平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場種植小麥所獲得的收益.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上函數(shù),若函數(shù)關(guān)于點(diǎn)對稱,且則關(guān)于x的方程()n個不同的實(shí)數(shù)解,則n的所有可能的值為( )

A.2B.4

C.24D.246

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為,離心率為.

求橢圓的方程;

過點(diǎn)的直線交橢圓兩點(diǎn),問在軸上是否存在定點(diǎn),使得為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司決定每月給推銷員確定個具體的銷售目標(biāo),對推銷員實(shí)行目標(biāo)管理.銷售目標(biāo)確定的適當(dāng)與否,直接影響公司的經(jīng)濟(jì)效益和推銷員的工作積極性,為此,該公司當(dāng)月隨機(jī)抽取了50位推銷員上個月的月銷售額(單位:萬元),繪制成如圖所示的頻率分布直方圖.

1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內(nèi)的頻率.

②根據(jù)直方圖估計(jì),月銷售目標(biāo)定為多少萬元時,能夠使70%的推銷員完成任務(wù)?并說明理由.

2)該公司決定從月銷售額為的兩個小組中,選取2位推銷員介紹銷售經(jīng)驗(yàn),求選出的推銷員來自同一個小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實(shí)數(shù)滿足,且,則稱的一個點(diǎn).

(1)證明:函數(shù)不存在點(diǎn);

(2)若函數(shù)存在點(diǎn),求的范圍;

(3)已知函數(shù),證明:存在正實(shí)數(shù),對于區(qū)間內(nèi)任意一個皆是函數(shù)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)工會利用“健步行”開展明年健步走積分獎勵活動.會員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).為了解會員的健步走情況,工會在某天從系統(tǒng)中隨機(jī)抽取了1000名會員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,,九組,整理得到如下頻率分布直方圖:

1)從當(dāng)天步數(shù)在,,的會員中按分層抽樣的方式抽取6人,再從這6人中隨機(jī)抽取2人,求這2人積分之和不少于220分的概率;

2)求該組數(shù)據(jù)的中位數(shù).

查看答案和解析>>

同步練習(xí)冊答案