A. | a≥$\frac{1}{5}$ | B. | a>$\frac{1}{5}$ | C. | a<$\frac{1}{5}$ | D. | a≤$\frac{1}{5}$ |
分析 由x>0,不等式$\frac{x}{{x}^{2}+3x+1}$=$\frac{1}{x+\frac{1}{x}+3}$,運用基本不等式可得最大值,由恒成立思想可得a的范圍.
解答 解:由x>0,$\frac{x}{{x}^{2}+3x+1}$=$\frac{1}{x+\frac{1}{x}+3}$,
令t=x+$\frac{1}{x}$,則t≥2$\sqrt{x•\frac{1}{x}}$=2
當(dāng)且僅當(dāng)x=1時,t取得最小值2.
$\frac{x}{{x}^{2}+3x+1}$取得最大值$\frac{1}{5}$,
所以對于任意的x>0,不等式$\frac{x}{{x}^{2}+3x+1}$≤a恒成立,
則a≥$\frac{1}{5}$,
故選:A.
點評 本題考查函數(shù)的恒成立問題的解法,注意運用基本不等式求得最值,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
手機編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
A型待機時間(h) | 120 | 125 | 122 | 124 | 124 | 123 | 123 |
B型待機時間(h) | 118 | 123 | 127 | 120 | 124 | a | b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com