8.已知直線$\sqrt{3}$x-y+2=0及直線$\sqrt{3}$x-y-10=0截圓C所得的弦長均為8,則圓C的面積是(  )
A.25πB.36πC.49πD.32π

分析 由兩平行直線間的距離公式求出圓心到直線的距離,由弦長公式求出圓的半徑,由面積公式求出圓的面積.

解答 解:兩平行直線$\sqrt{3}$x-y+2=0、$\sqrt{3}$x-y-10=0間的距離d=$\frac{|2-(-10)|}{\sqrt{(\sqrt{3})^{2}+1}}$=6,
∴圓心C到直線直線$\sqrt{3}$x-y+2=0的距離是3,
∵兩平行直線截圓C所得的弦長均為8,
∴圓C的半徑r=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴圓C的面積S=πr2=25π,
故選:A.

點(diǎn)評 本題考查直線與圓相交時(shí)弦長問題,圓的面積公式,以及兩平行直線間的距離公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.證明關(guān)于函數(shù)y=[x]的如下不等式:
(1)當(dāng)x>0時(shí),1-x<x[$\frac{1}{x}$]≤1;
(2)當(dāng)x<0時(shí),1≤x[$\frac{1}{x}$]<1-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(10a+b)12的展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是第(  )項(xiàng).
A.6B.7C.6或7D.以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|a≤x≤a+3},B={x|x<-4或x>5}.若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),左焦點(diǎn)為F1(-$\sqrt{3}$,0).
(1)求橢圓C的方程;
(2)過點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點(diǎn),將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)拋物線C1:y2=4x的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2,橢圓C2以F1,F(xiàn)2為焦點(diǎn)且橢圓C2上的點(diǎn)到F1的距離的最大值為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l經(jīng)過橢圓C2的右焦點(diǎn)F2,與拋物線C1交于A1、A2兩點(diǎn),與橢圓C2交于B1、B2兩點(diǎn),當(dāng)以B1B2為直徑的圓經(jīng)過F1時(shí),求|A1A2|的長;
(3)若M是橢圓上的動點(diǎn),以M為圓心,MF2為半徑作⊙M是否存在定圓⊙N,使得⊙M與⊙N恒相切,若存在,求出⊙N的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0與點(diǎn)A(0,2),若直線l上存在點(diǎn)M滿足|MA|2+|MO|2=10(O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a的取值范圍是( 。
A.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]B.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1)C.[-$\sqrt{5}$-1,$\sqrt{5}$-1]D.[-$\sqrt{5}$-1,$\sqrt{5}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過點(diǎn)(2,0)引直線l與圓x2+y2=2相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB面積取最大值時(shí),直線l的斜率為( 。
A.$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.±$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\frac{1}{3}$ax3-2x2+cx在R上單調(diào)遞增且ac≤4,則$\frac{a}{{c}^{2}+4}$+$\frac{c}{{a}^{2}+4}$的最小值為(  )
A.0B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊答案