【題目】十八屆五種全會(huì)公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本國(guó)策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對(duì)夫婦可生育兩個(gè)孩子的政策,提高生殖保健、婦幼保健、托兒等公共服務(wù)水平.為了解適齡公務(wù)員對(duì)放開生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了100位30到40歲的公務(wù)員,得到情況如下表:

男公務(wù)員

女公務(wù)員

生二胎

40

20

不生二胎

20

20

(1)是否有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由;

(2)把以上頻率當(dāng)概率,若從社會(huì)上隨機(jī)抽取3位30到40歲的男公務(wù)員,記其中生二胎的人數(shù)為,求隨機(jī)變量的分布列,數(shù)學(xué)期望.

0.050

0.010

0.001

3.841

6.635

10.828

附:

【答案】(1)沒有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”,理由見解析;(2)分布列見解析,期望為.

【解析】試題分析:(1)根據(jù)公式計(jì)算,和比較大小;(2)根據(jù)頻率可得男公務(wù)員“生二胎”的概率為,所以, ,并求期望.

試題解析:(1)沒有95%以上的把握認(rèn)為“生二胎與性別有關(guān)”.

.

(2)由已知得男公務(wù)員“生二胎”的概率為,并且由已知的分布列:

0

1

2

3

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求圓的極坐標(biāo)方程;

(Ⅱ)直線的極坐標(biāo)方程是,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱,側(cè)面,,.

)求證

二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國(guó)家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:,且每處理一頓二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.

1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家每月至少需要補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),( , ).

(1)若 ,求函數(shù)的單調(diào)增區(qū)間;

(2)若時(shí),不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng), 時(shí),記函數(shù)的導(dǎo)函數(shù)的兩個(gè)零點(diǎn)是),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

(Ⅰ)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)設(shè),且,若在[1,e]上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若的解集為,求實(shí)數(shù), 的值;

(2)當(dāng)時(shí),解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩枚均勻的硬幣和一枚不均勻的硬幣,其中不均勻的硬幣拋擲后出現(xiàn)正面的概率為,小華先拋擲這三枚硬幣,然后小紅再拋擲這三枚硬幣.

(1)求小華拋得一個(gè)正面兩個(gè)反面且小紅拋得兩個(gè)正面一個(gè)反面的概率;

(2)若用表示小華拋得正面的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)當(dāng)時(shí),求的值域;

(2)若b為正實(shí)數(shù),的最大值為M,最小值為m,且滿足,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案